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a b s t r a c t

The time-singularity multifractal spectrum distribution (MFSD) has been proposed
recently as a generalized singularity spectrum in a time varying framework. In this paper,
we aim at putting forward a new algorithm i.e. MFSD based on detrending moving average
(DMA-MFSD) to determine MFSD, which is also a generalization of multifractal detrending
moving average (MF-DMA) method. We relate DMA-MFSD method to the MFSD based on
the standard partition function, and prove that both approaches are equivalent for fractal
time series with compact support. The performance of the DMA-MFSD methods with dif-
ferent moving windows is studied using synthetic fractional Gaussian noise (fGn), binomial
multiplicative cascades (BMC) with analytical solutions and real sea clutter data. We find
that the estimated DMA-MFSD is in good accordance with the detrended fluctuation anal-
ysis based multifractal spectrum distribution (DFA-MFSD) and the theoretical analysis.
Overall, the backward DMA-MFSD method has the best performance, which provides the
most accurate estimates of the time-singularity MFSD, while the centered DMA-MFSD
method performs worse. In addition we find that the backward DMA-MFSD algorithm even
outperforms the DFA-MFSD method in the computational complexity and precision.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Fractals and multifractals are ubiquitous in natural and
social sciences since it was presented by Mandelbrot,
especially in the field of signal modeling, analysis and
processing in the natural world [1], such as electroenceph-
alograms (EEG), electrocardiograms (ECG), as well as
turbulent flows [2], seismicity [3], DNA sequences [4],
stock market [5], geographical objects [6] and so on. There
are a large number of methods developed to characterize
the properties of fractals and multifractals, and the classi-
cal method is fractal dimensions and multifractal spectrum

(MFS) [7]. Multifractal analysis is based on the Hausdorff
measure and Hausdorff dimension of fractal subsets, which
is extension of fractal dimension. MFS develops the con-
ception of overall fractal dimension, which ignores the
local information and details characteristic and is sufficient
only for overall depiction of signal. By means of statistical
analysis of singularity exponent, MFS describes fractal
dimensions of fractal subsets according to different singu-
larity exponent. There are several algorithms for MFS, for
example, structure function method, wavelet coefficient
based MFS [8], wavelet transform model maxima (WTMM)
[9], detrending fluctuation analysis (DFA) and detrending
moving average (MF-DMA) [10,11] and wavelet leaders
method (WLMF) [12]. These methods focus mainly on esti-
mation accuracy, statistical convergence, limited data
length effects, calculation complexity, stability and the
mathematical foundation of the MFS [13,14].
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Multifractal singularity spectrum can be regarded as
signal representation of fractal signal in singularity
domain, which adapts to the determined or stochastic
stationary fractal signal. However, when the signal is
non-stationary or nonlinear and singular characteristics
change over time, e.g. complex turbulent, oscillating singu-
larity signal and geophysics signal, MFS fails to describe
singularity spectrum characteristic at any given moment
[15,16]. In the past years, the windowed MFS and short-
time singularity exponent have been proposed, analogy
to the idea of short-time Fourier analysis, to overcome
the lack of time information of MFA [15]. Recently, we have
proposed the time-singularity multifractal formalism and
the time-singularity multifractal spectrum distribution
(MFSD) based on cyclic autocorrelation function [17] and
WTMM method [18], which are based on quadratic wave-
let analysis and involve tracing the maxima lines in the
wavelet transform over scales. Recently, a multifractal ver-
sion intended for multiple series is proposed by Zhou [19]
as a multifractal version of detrended cross-correlations
analysis [20].

In this paper, we develop time-singularity multifractal
spectrum distribution based on detrending moving
average (DMA-MFSD) as new multifractal time-singularity
formalism, which is also a generalization of multifractal
detrended moving analysis (MF-DMA) method. The DMA-
MFSD method is validated to be equivalent to the MFSD
based on standard partition function and statistical advan-
tage in computational complexity, precision and calculat-
ing convergence. This method does not require the
modulus maxima tracking procedure, and hence does not
involve more effort in programming than the conventional
MF-DMA. We find that the estimated DMA-MFSD f(t,a) are
in good accordance with the detrended fluctuation analysis
based multifractal spectrum distribution (DFA-MFSD) and
the theoretical analysis. Overall, the backward DMA-MFSD
method has the best performance, while the centered
DMA-MFSD method performs worse. In addition, we find
that the backward DMA-MFSD algorithm even outper-
forms the DFA-MFSD method and WTMM-MFSD in calcu-
lating precision and computational complexity.

In Section 2, the conception of time-singularity multi-
fractal spectrum distribution is introduced, and several
algorithms of determination of MFSD are analyzed. The
DMA-MFSD is theoretically induced and its algorithm
implements are analyzed. We also deduce the relation
between DMA-MFSD and standard multifractal spectrum
distribution based on the structure function, and prove
the uniformity of the two methods in the Section 3. In
Section 4, The performance of the DMA-MFSD methods is
studied using synthetic fractal and multifractal measures
with analytical solutions and real fractal series, including
fractional Gaussian noise (fGn), binomial multiplicative
cascades (BMC) [21] and real sea clutter [22]. Finally, in
Section 5, we give the conclusion.

2. Multifractal spectrum distribution (MFSD)

In this section, we will introduce some conception of
time-singularity MFSD [18] that will be used afterwards.

2.1. Time-singularity Hausdorff measure and spectrum
distribution

For a function or the path of a process x(t), the instanta-
neous self-correlation function can be expressed as
rxx(t, s) = E[x � (t + s/2)x(t � s/2)], with the time-delayed
conjugation of analyzed signal as the windows function,
and then we can obtain the time-varying Holder exponent
h(t, s) or the time-varying wavelet singularity exponent
W(t, s). According to anisotropies hypothesis, the statistic
character of stochastic process can be obtained by the
sampling signal, so the local character of x(t) can be
acquired by h(t, s) or W(t, s). Suppose the E[a](t) as
points subset with same singularity exponent in t, then
E½a�ðtÞ :¼ fs : lim inf

n!1
hðnÞkn ðtÞ ¼ ag.

The sets E½a�ðtÞða 2 RÞ give the multifractal decomposi-
tion of signal x(t), i.e. the fractal sets with a structure the
support of x(t) at time t. dim(E[a](t)) reveals the geometry
distribution of singularity exponents. In view of
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Fig. 1. Fractal Gaussian noise (fGn) and its MF-DMA spectrum. (a) Fractal
Gaussian noise with H = 0.3, nbpints = 210, (b) the multifractal spectrum of
BMC: the symbols ‘D’, ‘h’, ‘O’, and ‘e’ with solid line denote backward
MF-DMA, centered MF-DMA, forward MF-DMA, and MF-DFA3 methods,
respectively; d denotes the theoretical value.
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