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h i g h l i g h t s

• We review analysis techniques for human epileptic brain networks.
• We summarize recent findings derived from studies investigating these networks.
• We point to possible pitfalls and open issues, and discuss future perspectives.
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a b s t r a c t

Network theory provides novel concepts that promise an improved characterization of interacting dy-
namical systems. Within this framework, evolving networks can be considered as being composed of
nodes, representing systems, and of time-varying edges, representing interactions between these sys-
tems. This approach is highly attractive to further our understanding of the physiological and patho-
physiological dynamics in human brain networks. Indeed, there is growing evidence that the epileptic
process can be regarded as a large-scale network phenomenon. We here review methodologies for in-
ferring networks from empirical time series and for a characterization of these evolving networks. We
summarize recent findings derived from studies that investigate human epileptic brain networks evolv-
ing on timescales ranging from few seconds to weeks. We point to possible pitfalls and open issues, and
discuss future perspectives.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Over the past decade, network theory has contributed signifi-
cantly to improving our understanding of spatially extended, com-
plex dynamical systems, with wide applications in diverse fields,
ranging from physics to biology and medicine [1–15]. The human
brain is an open, dissipative, and adaptive dynamical system,
which can be regarded as a network of interacting subsystems.
Due to its complex structure, its immense functionality, and – as
in the case of brain pathologies – due to the coexistence of nor-
mal and abnormal functions and/or structures, the brain can be
regarded as one of the most complex and fascinating systems in
nature. The neocortex of human – a thin, extended, convoluted
sheet of tissue with a surface area of approx. 2600 cm2, and thick-
ness 3–4mm [16,17] – contains up to 1010 neurons, which are con-
nected with each other and with cells in other parts of the brain by
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about 1012 synapses [18]. The length of all connections amounts to
107–109 m. The highly interconnected networks in the brain can
generate a wide variety of synchronized activities, including those
underlying epileptic seizures, which often appear as a transforma-
tion of otherwise normal brain rhythms.

With 50million affected individuals worldwide [19,20], epilep-
sy represents one of themost common neurological disorders [21],
second only to stroke. Epilepsy is defined as a disorder of the brain
characterized by an enduring predisposition to generate epileptic
seizures and by the neurobiologic, cognitive, psychological, and social
consequences of this condition [22]. For about 30% of epilepsy
patients, seizures remain poorly controlled despite maximal
medical management [23–26]. There is thus a strong need for new
curative treatments [27,28].

An epileptic seizure is defined as a transient occurrence of signs
and/or symptoms due to abnormal excessive or synchronous neuronal
activity in the brain [22,29]. Epileptic seizuresmay be accompanied
by an impairment or loss of consciousness, psychic, autonomic
or sensory symptoms, or motor phenomena. Generalized-onset
seizures are believed to instantaneously involve almost the entire
brain [29], while focal-onset seizures appear to originate from a
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circumscribed region of the brain (epileptic focus [30,31]). These
simplistic concepts of focal and generalized seizures, however, are
being challenged by increasing evidence of seizure onset within a
network of brain regions (epileptic network) [32–35]. This supports
a new approach to classification of seizures and epilepsies [36].

The concept of an epileptic network comprises anatomically,
andmore importantly, functionally connected cortical and subcor-
tical brain structures and regions. Since the timescale between on-
set and offset of a seizure is orders of magnitude smaller than that
of any plausible change in the underlying structural components
(such as neurons, axons or dendrites), seizures (and other related
pathophysiological dynamics) may emerge from, may spread via,
andmay be terminated by network constituents that generate and
sustain normal, physiological brain dynamics during the seizure-
free interval.

Understanding the emergence of epilepsy and seizures from
epileptic brain networks calls for approaches that take into account
the interplay between the dynamic properties of nodes and the
network structures connecting them.When investigating epileptic
brain networks, nodes are usually assumed to represent distinct
brain regions and edges represent interactions between them, and
these nodes and edges constitute a functional network. Epileptic
brain networks are evolving functional networks since their edges
may change on various timescales, depending on physiological and
pathophysiological conditions.

In this review, we summarize recent conceptual and method-
ological developments that aim at an improved inference and char-
acterization of evolving epileptic brain networks. We highlight
areas that are under active investigation and that promise to pro-
vide new insights into the complex spatial and temporal dynam-
ics of these networks. We review frequently used approaches to
infer functional networks from multichannel recordings of neural
activities (Section 2) as well as network and node characteristics
that are most commonly used for investigating epileptic brain net-
works (Section 3). In Section 4 we summarize findings obtained
from studies that aim at characterizing evolving epileptic brain
networks with respect to various physiological and pathophysio-
logical conditions. Finally, in Section 5 we draw our conclusions
and give an outlook.

2. Inferring functional brain networks

Functional brain networks are supposed to reflect the inter-
action dynamics between brain regions. Representing the com-
plex system brain as a network, however, requires identification
of nodes and edges. This is a challenging issue given the com-
plex structural and functional organization of the brain – from the
level of single neurons via microcolumns (containing some tens
of neurons) and macrocolumns (consisting of some tens of micro-
columns) to the level of brain regions, lobes, and functional brain
systems – as well as methodological limitations in assessing this
organization [37–45]. Brain regions (nodes) are usually associated
with sensors that are placed to sufficiently capture the node dy-
namics. When characterizing edges, one is faced with the prob-
lem that the underlying equations of motion are not known and
that interactions between brain regions cannot be measured di-
rectly. Thus, usually time series analysis techniques are employed
to quantify linear or nonlinear interdependences between observ-
ables of brain regions.

2.1. Acquiring time series of neural activity

There are currently three recording techniques that are mainly
used to obtain time series of neural activity, namely elec-
troencephalography (EEG), magnetoencephalography (MEG), and

functional magnetic resonance imaging (fMRI). Each of these tech-
niques assesses different aspects of neuronal activity and has its
own spatial and temporal resolution as well as its way of associat-
ing brain regions to network nodes.

With EEG [46] andMEG [47], electric andmagnetic correlates of
neural activities outside the head are measured with sensors that
are placed according to standard schemes. In some epilepsy pa-
tients undergoing presurgical evaluation [30], sensors are placed
intracranially, which allows for directly recording neural activities
from within deeper brain structures and from the surface of the
brain (iEEG) [48]. In the following we use EEG for both, surface
and intracranial EEG. For all recording techniques, volume conduc-
tion and dense spatial sampling can give rise tomostly unavoidable
influences like transitivity and common sources (see Section 2.2),
which need to be addressed in subsequent analysis steps. For EEG
the recordingmontage togetherwith the choice of a reference elec-
trode is a notoriously ill-defined problem [49–51]. An important
advantage of EEG is the ability to perform recordings over extended
periods of time (days toweeks), such that awide spectrumof phys-
iological and pathophysiological activities can be captured. EEG
and MEG sample brain activities with a time resolution of a few
milliseconds, and sensor placement limits spatial resolution be-
sides the mentioned influences.

With fMRI [52] neural activity is assessed indirectly via asso-
ciated changes in blood oxygenation. While this can be captured
with very high spatial resolution, the temporal resolution is orders
of magnitude lower than with EEG or MEG.

2.2. Estimating interactions from time series

A plethora of analysis techniques is available to estimate
strength and direction of interactions from time series. These es-
timators originate from synchronization theory, nonlinear dynam-
ics, information theory, statistical physics, and from the theory of
stochastic processes (for an overview, see Refs. [53–60]). Here we
highlight some of the more recent developments and improve-
ments.

When analyzing interactions between several systems, onemay
be faced with the problem of transitivity: many estimators do
not allow for distinguishing between direct and indirect interac-
tions [39,61] and therefore spurious edges between network nodes
may be inferred. This issue has been addressed through the use of
partialization techniques [62–68] but their suitability for analyses
of empirical data remains to be shown. Another frequently arising
difficulty is due to the problem of common sources [39,43]: sen-
sors which are spatially close are likely to pick up very similar ac-
tivities. This can lead to spuriously high estimates of strengths of
interactions but can probably be avoided using more advanced es-
timators for phase synchronization [69,70]. Other developments
that promise to further advance characterization of interactions in-
clude an optimized mixed state-space embedding [71], improved
phase determination [72–76], bivariate surrogates [77–80], usage
of ranks for nonlinear interdependences [81], cross-frequency de-
composition [82], improved recurrence estimators [83], multivari-
ate and delayed information transfer [84–88], and approaches that
characterize interactions even for transient dynamics [89–91]. We
note that up to now there are no commonly accepted approaches
to estimate interactions and their properties from time series.

The human brain is certainly a non-stationary system, but
for most estimators at least approximate stationarity is required.
Therefore it is advisable to perform a time-resolved analysis, which
is carried out via a sliding-window approach. A trade-off has to
be made between approximate stationarity and the required sta-
tistical accuracy for the calculation of the estimator. Typically,
windows spanning several tens of seconds of brain activity are
assumed to be acceptable [92–94]. For each of these windows, an
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