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e We demonstrated the success of transfer entropy in detecting information flow in two oscillators.
o We explored the limitations of transfer entropy for causality inference in various scenarios.
o We developed causation entropy for more reliable inference of causality in networks of coupled oscillators.
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Inference of causality is central in nonlinear time series analysis and science in general. A popular
approach to infer causality between two processes is to measure the information flow between
them in terms of transfer entropy. Using dynamics of coupled oscillator networks, we show that
although transfer entropy can successfully detect information flow in two processes, it often results in
erroneous identification of network connections under the presence of indirect interactions, dominance
of neighbors, or anticipatory couplings. Such effects are found to be profound for time-dependent
networks. To overcome these limitations, we develop a measure called causation entropy and show that
its application can lead to reliable identification of true couplings.
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1. Introduction

The long-standing puzzle of “what causes what”, formally
known as the problem of causality inference, is challenging yet
central in science [1,2]. Understanding causal relationship between
events has important implications in a wide range of areas
including as examples social perception [3], epidemiology [4], and
econometrics [5]. It is the reliable inference of causality that allows
one to untangle complex causal interactions, make predictions, and
ultimately design intervention strategies.

Traditional approach of inferring causality between two
stochastic processes is to perform the Granger causality test [6].
A main limitation of this test is that it can only provide informa-
tion about linear dependence between two processes and therefore
fails to capture intrinsic nonlinearities that are common in real-
world systems. To overcome this difficulty, Schreiber developed
the concept of transfer entropy between two processes [7]. Trans-
fer entropy measures the uncertainty reduction in inferring the fu-
ture state of a process by learning the (current and past) states of
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another process. Being an asymmetric measure by design, trans-
fer entropy is often used to infer the directionality of information
flow and further the causality between two processes [8,9]. Re-
cently, it became increasingly popular to use transfer entropy for
causality inference in networks of neurons [10,11] and in coupled
dynamical systems with parameter mismatches [12], anticipatory
couplings [13], and time delays [14]. However, despite the over-
whelming number of proposed applications, a clear interpretation
of the resulting relationship inferred by transfer entropy is lacking.

In this paper, we study information transfer in the dynam-
ics of small-scale coupled oscillator networks. We show by sev-
eral examples that causal relationship inferred by transfer entropy
is often misleading when the underlying system contains indi-
rect connections, dominance of neighboring dynamics, or anticipa-
tory couplings. To account for these effects, we develop a measure
called causation entropy (CSE) and show that its appropriate appli-
cation reveals true coupling structures of the underlying dynamics.

2. Information theory and dynamical systems

In this section we introduce the mathematical tools used in this
study, which include elements from both dynamical systems and
information theory.
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2.1. Dynamical system as a stochastic process

Our focus of this paper is on discrete dynamical systems of the
form

Xer1 = f(xt), (1)

where x; € O C R" is the state variable and f : & — D is the
dynamic rule of the system. A trajectory (or orbit) {x;} of Eq. (1)
naturally represents a time series. For a continuous dynamical
system X = f(x), a time series can be obtained by sampling
its continuous trajectory at discrete time points. The time points
are often chosen to spread uniformly in time or to be the time
instances at which the trajectory intersects a given manifold that
is transversal to the trajectory, called a Poincaré section [15].

A natural bridge between dynamical systems and information
theory is the formulation of symbolic dynamics, which requires
discretization of the phase space. In particular, a finite topological
partition P = {Py, ..., Py} of the phase space D is a collection of
pairwise disjoint sets in £» whose union is £ [16]. Defining the
associated set of symbols 2 = {1, 2, ..., m}, one can transform
a trajectory {x;} into a symbolic sequence {s;}, where s; is defined
by [17,18]

XxXEPLCD=s, =i€s. (2)

Viewing £2 as the sample space, the symbolic sequence {s;} can
be seen as a time series of a stochastic process. Define a probability
measure over the partition P, as

w:P—R. (3)
If u is invariant under the dynamics, then [19,20]
Prob(s; = i) = u(i), Vie 2, teR. (4)

A partition P is called a Markov partition if it gives rise to a stochas-
tic process that is Markovian, i.e., future states of the process de-
pend only on its current state, and not the past states [21,22].

2.2. Information-theoretical measures: entropy, mutual information
and transfer entropy

Consider a discrete random variable X whose probability mass
function is denoted by p(x) = Prob(X = x). To quantify the unpre-
dictability of X, one can calculate its (information) entropy defined
as

H(X) == p(x)logp(x), (5)

where by convention, we use “log” to represent “log,”. In general,
H(X) approximates the minimal binary description length L of the
random variable X, with the following inequality [21]:

HX) <L < HX) + 1. (6)

It follows that, among all random variables with ¢ elements, the
one with uniform distribution yields the maximum entropy, log(c).

Consider now two random variables X and Y with joint
distribution

p(x,y) = ProbX =x,Y =y), (7)
and conditional distribution
p(xly) = Prob(X = x|Y =y). (8)

The joint entropy H(X, Y) and conditional entropy H(X|Y) for X and
Y are defined, respectively, as

HX,Y) == p(x.y)logp(x, ), 9)
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Fig. 1. Venn-like diagrams for information-theoretical measures. (a) Relations
between: entropies H(X) and H(Y), joint entropy H(X, Y), conditional entropies
H(X|Y) and H(Y|X), and mutual information I(X; Y), of two random variables X
and Y. (b) Relations between: transfer entropy Ty, x, entropies of random variables
Xi+1, Xt, and Y¢, and their joint and conditional entropies. The transfer entropy is
the difference between the conditional entropies H(X;+1|X, Y:) and H(X¢11|X¢),
which measures the extra information provided by Y; (in addition to X;) in the
determination of X; ;.

and
HX|Y) = =) pOH(YIX = x)
y
= — ) p(x.y)logp(Kly). (10)
Xy

Similar definition holds for H(Y|X).

Itis easy to verify that conditioning reduces entropy, i.e., knowl-
edge of Y will reduce (or at least cannot increase) the uncertainty
about X, i.e.,

HX|Y) < HX). (11)

Similarly, H(Y|X) < H(Y).

The reduction of uncertainty of X (Y) given full information
about Y (X) can be measured by the mutual information between X
and Y, as [21]

I(X;Y) = HX) — HX|Y) = H(Y) — H(Y|X). (12)

The mutual information is symmetric in X and Y, and measures
their deviation from independence: if X and Y are fully dependent,
then H(X|Y) = H(Y|X) = 0 and thus I(X; Y) = H(X) = H(Y); on
the other hand, if X and Y are independent, then H(X|Y) = H(X)
and H(Y|X) = H(Y) and therefore I(X;Y) = 0. In general, we
have [21]

0 < I(X;Y) < min[H(X), H(Y)]. (13)

It is convenient to visualize the relationship between entropy,
joint entropy, conditional entropy, and mutual information by a
Venn-like diagram, as shown in Fig. 1(a).

We now turn to stochastic processes. For a stationary process
{X:}, its entropy rate H(X) can be defined as

H() = lim HOG 1, X2, -, X0), (14)

which can be thought of as the (asymptotic) growth rate of the joint
entropy H(Xy, X3, ..., X;). If the process is Markovian, then [21]
H(X) = tlim H(Xe|Xe-1).- (15)
—00
For two stochastic processes {X;} and {Y;}, the reduction of

uncertainty about X;, 1 due to the information of the past 7y states
of Y, represented by

Y[(rY) =, Y1, Yeogy i), (16)
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