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h i g h l i g h t s

• A procedure for statistical measure standardisation is proposed.
• A novel framework of composite measures for complex evolving networks is proposed.
• Demonstration of its working by investigating real data from the WTW and the WMW.
• The composite measure is shown to follow a parameter-free std. normal distribution.
• Simulations demonstrate applicability of the concept to large and general data sets.
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a b s t r a c t

We derive a composite centrality measure for general weighted and directed complex networks, based
onmeasure standardisation and invariant statistical inheritance schemes. Different schemes generate dif-
ferent intermediate abstract measures providing additional information, while the composite centrality
measure tends to the standard normal distribution. This offers a unified scale to measure node and edge
centralities for complex evolving networks under a uniform framework. Considering two real-world cases
of the world trade web and the world migration web, both during a time span of 40 years, we propose
a standard set-up to demonstrate its remarkable normative power and accuracy. We illustrate the ap-
plicability of the proposed framework for large and arbitrary complex systems, as well as its limitations,
through extensive numerical simulations.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Starting with the work of Watts, Strogatz, Barabási, Albert and
Newman [1–3], the investigation of complex networks has at-
tracted an inflationary amount of attention from numerous re-
search fields due to their ubiquity in the realworld [4–6]. One of the
fascinations lies in some elegant and efficient descriptions of very
different complex systems under the general framework of mod-
ern graph theory [7,8] pioneered by Erdös [9].

As the awareness of several common dynamic characters of
many real-world networks rises, evermore effort has been devoted
to understanding the temporal evolution of complex networks.
Prominent examples of evolving networks are the internet and so-
cial networks [5], transportation networks [10], the world trade
web [11,12] and most recently climate networks [13]. Any of such
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networks is generated by and/or hosts an underlying flow between
its nodes, such as information, contacts, goods or diseases. Con-
sidering the description and analysis of evolving network struc-
tures, most efforts have been made regarding network modelling
[14–18], while the development of sophisticated analysis tools and
methodologies has seen less progress. This yet will be the topic of
this work.

The characterisation and classification of general complex sys-
tems and especially complex evolving networks pose three major
challenges:

• Uniformity: There is a large variety of network measures
stretching overwidenumerical ranges, but there is no standard-
ised procedure today to consistently consider several measures
simultaneously.

• Variability: Observed over time, many complex networks show
growth (change of the number of nodes) and evolution (change
of the topology). Network measures often depend explicitly on
these quantities, which complicates a coherent temporal anal-
ysis.

• Comparability: There is no unified scale on which one can com-
pare results originating from different networks.
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Furthermore, [19,20] classified the underlying flows and the cor-
responding graph measures in terms of their physical or graph-
theoretic properties, respectively. In a given situation, the exact
details of the underlying flowsmight not bewell-understood, and a
multi-dimensional analysis of graph measures allowing for simul-
taneous evaluations is desirable.

Motivated by this and the above-stated general problems, we
propose here a new centrality framework, called composite central-
ity (CC). Generally, the notion of centrality can be understood as a
measure quantifying the participation of a node (or any other com-
ponent) in the underlying flow structure of a network [19]. This
will also be the point of view we adopt in this work. The idea be-
hind the CC-framework is that one first defines a set of characteris-
tics of interest, and then chooses appropriate network (centrality)
measures. The major complications when considering multiple
network measures are different (often arbitrary) numerical scales
and variously shaped distributions such as distributions with and
without heavy tails. We therefore implement a standardisation
procedure involving a non-linear transformation and statistical
normalisation. Relying on statistical methods, uniformity and vari-
ability are accounted for. Standardised measures can be combined
using invariant inheritance schemes to form new standardisedmea-
sures carrying abstract physicalmeanings, whichwe call composite
centrality. It turns out that final CC-scores for different set-ups and
different networks are well-approximated by the standard normal
distribution with a zero mean and a unit variance. This is what we
call a universal scale to compare scores for different set-ups and
even different networks across time (comparability).

This paper is structured as follows. In Section 2, we give a short
introduction to the relevant terminology from graph theory and
propose a recipe for (graph) measure standardisation. In Section 3,
we present the CC-framework and introduce a specific standard
framework. We demonstrate the working of the proposed set-up
by considering two cases of the world trade web and the world
migration web, both during a time span of 40 years. Furthermore,
a graphical tool, which we call the network genetic fingerprint,
is introduced. It allows for efficient analysis and monitoring of
composite centrality scores. In Section 4, we discuss the validity
and limitations of the proposed framework through large-scale
simulations. We finally conclude the study in Section 5.

2. Preliminaries

2.1. Graph theory

In this section, we give a short introduction to the parts of graph
theory that are needed in the following. Explicit formulas will be
given only if deemed necessary. For a more detailed introduction,
we refer to [4–7].

Graph theory provides a general mathematical framework to
represent and quantify complex networks and their properties.
A weighted and directed network can be represented by a graph
G = (V , E), where V = {v1, . . . , vN} is the set of N ≥ 2 nodes
(vertices) in the graph. E


wij > 0| i, j ∈ {1, . . . ,N}


is the set of

weighted edges fromnode vi to node vj, withNe = ord(E)denoting
the number of edges irrespective of their weights. Thewhole graph
can be represented by a real weight matrix, W = [wij] ∈ RN×N

(wij ≠ wji, in general). We do not allow for self-loops here, i.e.
wii = 0 for all i ∈ {1, . . . ,N}. The ith row or column represents
the out- or in-strength distribution of node i, respectively. The to-
tal strength of a node i, denoted by si, is the sum of in-strengths sini
and out-strengths souti of that node. It represents a generalisation of
the degree centrality (number of adjacent edges) in an undirected
and unweighted graph. The degree of a node can be obtained from
the underlying simple (non-weighted, non-directed, no self-loops)
graph through its adjacency matrix A = [aij] ≡ [aji] ∈ {0, 1},
where aij = 1 if there is an edge between node i and node j,

but aij = 0 otherwise. Likewise, since self-loops are not allowed,
one has aii = 0 for all i ∈ {1, . . . ,N}. The degree of node i is
given by the ith row or column sum of A. Strength and degree of
a node can be interpreted as two measures for local connectivity
either considering weighted or unweighted graphs, respectively.
Here and later, we refer to measures over weighted networks as
being of quantitative nature and measures over unweighted net-
works as being qualitative. The difference between both levels of
complexity is summarised under the notion of (edge) texture. It is
said that there is a connection between any two nodes i and j in
G if there exists a directed path pij from i to j (pij ≠ pji, in gen-
eral). A directed graph is said to be strongly-connected if there ex-
ists a directed path between any two nodes. This means that the
weight matrix W and the adjacency matrix A are both irreducible.
A measure for the connectivity of a graph on the global scale is the
edge density ρe = Ne/


N2

− N

(number of actual edges divided

by number of possible edges), while on a local scale the embedding
of a node can be expressed via its clustering coefficient. On the ad-
jacency level, the clustering coefficient of a node is defined as the
number of actual connections within its neighbours over the num-
ber of possible connections among them. A further importantmea-
sure to quantify the participation of a node i into the path-structure
of a network indicating overall connectivity is the average short-
est path length per other node li = ⟨lij⟩i (or farness), i.e. the aver-
age number of steps (over unweighted edges) which it takes to get
from node i to any other node j. A generalisation toweighted edges
is straightforward, once one relates edge weight to distance. Note
that in a directed graph the shortest path between two nodes is
generally not symmetric, i.e. lij ≠ lji. The diameter ø of a graph is
defined as the maximal shortest path between any two nodes. The
maximal flow fij between two nodes i and j is the maximal capac-
ity that can be transported parallelly from node i to node j via the
whole graph for networks in which the edge weight can be inter-
preted as representing some form of capacity [4], e.g. bandwidth
for electronic data transmission (again fij ≠ fji, in general).

Graph asymmetry is a measure for the difference between wij
and wji on a global scale, i.e. for the overall weight balance. We
define it as

AD =
∥W − W T

∥F

2 ∥W∥F
∈ [0, 1], (1)

where ∥ · ∥F denotes the Frobenius norm of a matrix. The algebraic
connectivity λ1 of the normalised Laplacian LN = D−

1
2 (D − W )

D−
1
2 , where D = diag(s1, . . . , sN) is a diagonal matrix consisting

of the nodes’ strengths, is the smallest non-zero eigenvalue, while
the Laplacian always has a single zero eigenvalue for the case of
only one single connected component. It is a measure for the ro-
bustness of a graph against node removal (failure) [4,21]. A fur-
ther measure is assortativity [4,5], As ∈ [−1, 1], which describes
the overall homogeneity of connections indicating if weak/strong
nodes are preferentially coupled to other weak/strong nodes (or
vice versa), resulting in a positive (or negative) As value. Eigenvec-
tor centrality of a node i is defined as the ith entry of the eigenvector
corresponding to the largest eigenvalue of the underlying graph’s
adjacency matrix. It measures howwell a node is connected to the
whole graph or to other well-connected (high-scoring) nodes re-
cursively [4].

2.2. Measure standardisation

Different node measures (e.g. centrality measures) generally
span wide and different numerical ranges, show different levels
of variation and exhibit variously shaped distributions, which
makes them difficult to compare.2 For instance, it is difficult to

2 Here and throughout, we only consider nodemeasures. A generalisation to edge
measures is straightforward.
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