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h i g h l i g h t s

• Analytically tractable, two-timescale, network-dependent collective migration model.
• Bifurcations explain hysteresis in migration recovery in fragmented environments.
• Minimum connectivity for evolutionary branching into leaders and followers.
• Social interaction graph influences emergence and location of leaders.
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a b s t r a c t

The evolution of leadership inmigratory populations depends not only on costs and benefits of leadership
investments but also on the opportunities for individuals to rely on cues from others through social
interactions. We derive an analytically tractable adaptive dynamic networkmodel of collective migration
with fast timescale migration dynamics and slow timescale adaptive dynamics of individual leadership
investment and social interaction. For large populations, our analysis of bifurcations with respect
to investment cost explains the observed hysteretic effect associated with recovery of migration in
fragmented environments. Further, we show a minimum connectivity threshold above which there is
evolutionary branching into leader and follower populations. For small populations, we show how the
topology of the underlying social interaction network influences the emergence and location of leaders
in the adaptive system. Our model and analysis can be extended to study the dynamics of collective
tracking or collective learningmore generally. Thus, this workmay inform the design of robotic networks
where agents use decentralized strategies that balance direct environmental measurements with agent
interactions.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

A great variety of species including birds, fish, invertebrates and
mammals engage in collectivemigration [1–4]. Themigratory pro-
cess is often an adaptive response to conditions such as competi-
tion for resources in a dynamic environment, seasonal variability,
and selection of newhabitats for breeding [1,5–7]. On the onehand,
animals performmigratory tasks by leveraging environmental cues
such as nutrient and thermal gradients, magnetic fields, odor cues,
or visual markers [8–10]. Measuring these stochastic environmen-
tal signals is complicated and requires the investment of time and
energy, as well as the development of necessary physiological and
sensorymachinery such as vision in insects and vertebrates [2] and
chemical signaling in bacteria [11]. On the other hand, animals can
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perform migrating tasks by leveraging social cues from neighbors
(nearby conspecifics) [5–7]. By imitating invested neighbors (or
neighbors of invested neighbors, etc.) using consensus processes
such as cohesion and alignment, some animals in a group can mi-
grate well without paying the costs associated with directly mea-
suring and processing the environmental signal.

The interplay between costly information acquisition from the
environment and relatively less expensive social interactions with
the group raises two important questions regarding leadership
and social interactions in migratory populations. Here, leadership
means the influence of individuals who are informed about the
environmental signal, e.g., by investing time and energy in taking
a measurement. Although these informed individuals are referred
to as ‘‘leaders’’ and the remaining uninformed individuals as
‘‘followers’’, it is not assumed that leaders can be identified or can
signal their information to others.

The first important question relates to the migratory perfor-
mance of large groups in the presence of a limited number of lead-
ers, i.e., can a subset of informed individuals effectively lead a large

0167-2789/$ – see front matter© 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.physd.2013.04.014

http://dx.doi.org/10.1016/j.physd.2013.04.014
http://www.elsevier.com/locate/physd
http://www.elsevier.com/locate/physd
mailto:dpais@alumni.princeton.edu
mailto:naomi@princeton.edu
http://dx.doi.org/10.1016/j.physd.2013.04.014


82 D. Pais, N.E. Leonard / Physica D 267 (2014) 81–93

group? Couzin et al. [12] address this question using individual-
based simulations (involving social forces of attraction, repulsion
and alignment among individuals) and demonstrate that in a group
of socially interacting individuals, a small fraction of informed
leaders can effectively determine the direction of travel of a large
group of uninformed followers.

The second important question relates to the evolution of
leadership in collective migration, i.e., under what conditions is
the coexistence of invested leaders and social followers stable
in an evolutionarily sense? This question is especially relevant
when the cost of investing in signal acquisition is sufficiently high;
followers can leverage the investments made by leaders using
social interactions without having to pay the investment costs
themselves, but not all individuals can be followers if the group is
tomigrate successfully. Guttal and Couzin [5] address this question
(also see related commentary [13]) using evolutionary simulations
and an individual-based model similar to that used in [12]; they
show that the specialization of groups into coexisting leaders
and followers (also known as branching) is a stable evolutionary
outcome.

Motivated by these questions and results, we develop an
analytically tractable model of collective migration with which we
can rigorously study the adaptive network dynamics associated
with the evolution of collective migration and the emergence
of leadership when leadership is costly and social interaction
is relatively cheap. We investigate the influence on group-level
outcomes of the (evolving) network topology, i.e., who is sensing
and responding to whom within the group, as a function of the
cost of investing in the environmental signal. Our model can
be generalized to a broader set of adaptive network dynamics
associated with a collective task, such as collective tracking or
collective learning of a noisy, unknown signal [14,15], carried
out by agents with decentralized strategies that balance direct
environmental measurements with social interactions.

Torney et al. [6] derive a mean-field approximation to the evo-
lutionary model studied in [5], and using tools from evolutionary
adaptive dynamics [16,17] prove conditions for the branching of a
migrating population into leader and follower groups. The mean-
field approach effectively prescribes an all-to-all social interaction
topology between the individuals in order to reduce dimensional-
ity, critical to the analysis in [6]. However, the approach ignores the
potentially important role of limited social interactions; indeed, it
has been shown that network topology plays a critical role in deter-
mining outcomes in collective dynamics [14,15,18–21]. Our model
derives directly from the model of [6] with a key generalization to
the case of limited interaction networks and a modification that
allows individual fitnesses to be computed from a linear matrix
equation as a function of the network topology encoded by a di-
rected graph.

In our model each agent i has a scalar strategy ki(t) ∈ [0, 1]
at time t which defines how much it invests in the environmental
signal; ki = 0 means no investment and ki = 1 means full
investment. The strategy also determines how much it attends
to social interaction: a higher ki implies a lower attention to
measurements of neighbors, equivalently, the associated edges of
the network graph are scaled by (1 − ki)2. The network dynamics
have two timescales. In the fast timescale the strategies ki are fixed,
such that the stochastic migration dynamics and the fitnesses
depend on a fixed interconnection topology. In the slow timescale
the strategies ki change according to evolutionary (or adaptive)
dynamics and with them the investments and graph edge weights.

We present three main results that leverage the extension of
the migration model of [6] to directed, limited social interaction
topologies and the corresponding matrix equation for fitnesses
(which replaces extensive Monte-Carlo simulations as used in [6,
5]). Our first main result is a complete bifurcation analysis of the

two-timescale dynamics as a function of investment cost in the
case of a large population with an underlying network topology
that is all-to-all; our results explain previous observations that are
initial condition dependent and demonstrate the hysteretic effect
associated with losing and then recovering migration ability as
described in [5,22]. Our second main result addresses the two-
timescale dynamics in the case of a large population with an
underlying network topology that is limited; we find a relatively
small threshold in connectivity above which there is evolutionary
branching and emergence of leaders.

Our third main result addresses the case of a small population
in which the slow evolutionary dynamics of strategies ki, based
on replication and mutation, are replaced with individual greedy
adaptive dynamics. We show the critical role that the structure of
the underlying network topology plays in determining the location
of leaders in the adaptive network and in influencing bifurcations
in the dynamics as a function of increasing cost. This analysis is
motivated in part by an interest in leveraging the mechanisms of
evolved natural collectives in the design of decentralized protocols
for collective motion and decision-making in robotic groups
[18,23].

The paper is outlined as follows.1 In Section 2 we present
our evolutionary migration model. We derive analytical results
for fitnesses on the fast timescale in Section 3. We study the
slow timescale dynamics in the all-to-all limit in Section 4 and
for limited interconnections in Section 5. We focus on adaptive
dynamic nodes in small networks in Section 6 and conclude in
Section 7.

2. Model description

Our model is derived from the mean-field migration model
in [6] with two key modifications; we explicitly account for a
limited social interaction graph topology in the dynamics and
we introduce a slightly modified social noise model to allow for
analytical fitness computations as a function of graph topology and
individual investments. In the remainder of the paper wewill refer
to individuals, agents and nodes interchangeably, and likewise
population and network.

Consider a set of N agents indexed by i ∈ {1, . . . ,N}. Let xi(t) ∈

R be the direction of migration of agent i at time t , and let µ ∈ R
be the ‘‘true’’ desirable direction of migration. Accurate tracking
of the direction µ over time may correspond to benefits such as
improvement in environmental conditions for foraging, predator
evasion, early access to breeding grounds, etc. Following [6], the
stochastic dynamics of each agent are given by

dxi = kidxDi + (1 − ki)dxSi, (1)

where dxDi and dxSi are the driven tracking and social consensus
stochastic processes, respectively. The adaptive strategy ki ∈ [0, 1]
tunes the level of investment made by agent i in the driven and
social processes. When ki = 1, agent i is fully invested in the
tracking process and ignores social cues, while when ki = 0
agent i exclusively leverages social cues without tracking the
environmental signal.

The driven process dxDi is modeled as an Ornstein–Uhlenbeck
stochastic process [25,26] of the form

dxDi = −kDi(xi − µ)dt + σDdWDi. (2)

The parameter kDi ≥ 0 corresponds to the gain associated with
tracking, σD > 0 is the noise intensity associated with measuring
the environmental signal µ, and dWDi represents the standard

1 See [24] for related text and figures.
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