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a b s t r a c t

Let M be a compact real-analytic manifold, equipped with a real-analytic Riemannian
metric g, and let β be a closed real-analytic 2-form on M , interpreted as a magnetic field.
Consider the Hamiltonian flow on T ∗M that describes a charged particle moving in the
magnetic field β . Following an idea of T. Thiemann, we construct a complex structure on
a tube inside T ∗M by pushing forward the vertical polarization by the Hamiltonian flow
‘‘evaluated at time i’’. This complex structure fits together with ω − π∗β to give a Kähler
structure on a tube inside T ∗M . When β = 0, our magnetic complex structure is the
adapted complex structure of Lempert–Szőke and Guillemin–Stenzel.

We describe the magnetic complex structure in terms of its (1, 0)-tangent bundle,
at the level of holomorphic functions, and via a construction using the embeddings of
Whitney–Bruhat and Grauert. We describe an antiholomorphic intertwiner between this
complex structure and the complex structure induced by −β , and we give two formulas
for local Kähler potentials, which depend on a local choice of vector potential 1-form for β .
Finally, we compute themagnetic complex structure explicitly for constantmagnetic fields
on R2 and S2.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

1.1. Adapted complex structures

Adapted complex structures were introduced, independently and in different but equivalent ways, by L. Lempert and
R. Szőke [1,2] and by V. Guillemin and M. Stenzel [3,4]. Let (M, g) be a real-analytic Riemannian manifold, let TM be the
tangent bundle ofM , and let T RM denote the ‘‘tube’’ of radius R, that is, the set of vectors in TM with length less than R > 0.
For each unit-speed geodesic γ in M , we can define a map Ψγ of the complex plane into TM by setting

Ψγ (σ + iτ) = Nτ γ̇ (σ ) ∈ Tγ (σ )M,

where Nτ is scaling in the fibers by τ . In the terminology of Lempert–Szőke [1, Def 4.1], a complex structure on some T RM
is adapted (to the metric on M) if, for each γ , the map Ψγ is holomorphic as a map of the strip {σ + iτ : |τ | < R} ⊂ C into
T RM . IfM is compact, there is a unique adapted complex structure on T RM for all sufficiently small R. Guillemin and Stenzel
defined complex structures on the cotangent bundle T ∗M by means of a Kähler potential and an involution. Their approach
turns out to be equivalent to that of Lempert–Szőke after identification of the tangent and cotangent bundles.
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For certain very special manifolds M , the adapted complex structure exists globally, that is, on all of TM ∼= T ∗M . Exam-
ples of such manifolds include compact Lie groups with bi-invariant metrics, compact symmetric spaces, and the Gromoll–
Meyer exotic 7-sphere [5]. When M is a compact Lie group with a bi-invariant metric, nice results hold for the geometric
quantization of T ∗M with the polarization coming from the adapted complex structure [6–8].

1.2. Thiemann’s method

Meanwhile, in [9, Sec 2.1], T. Thiemann proposes a ‘‘complexifier’’ method for introducing complex structures on
cotangent bundles of manifolds. Let C be a smooth function on T ∗M and let XC be the associated Hamiltonian vector field.
Let f be a function that is constant along the leaves of the cotangent bundle and define

fC = eiXC (f ), (1.1)

provided that this can be defined in some natural way either on all of T ∗M or on some portion thereof. (For real σ , exp(σXC )f
is just the composition of f with the classical flow generated by C . To put σ = i, we need to analytically continue the expres-
sion exp(σXC )f with respect to σ .) Thiemann proposes that the complex structure associated to the function C is the one
for which the holomorphic functions are precisely the functions of the form fC, where f is constant along the fibers of T ∗M .

For a general C (even assumed to be real analytic), it is not clear to what extent one can carry out this program, because
of convergence questions associated to the analytic continuation. Nevertheless, in the case that M is a compact Lie group
with bi-invariant metric, if we take C to be half the length-squared in the fibers, then it is not hard to show that Thiemann’s
prescription makes sense and gives the adapted complex structure on T ∗M . (See Equation (3.37) in [10], Equation (3.8) in
[11], and Section 4 of [6].)

In [12], we analyze adapted complex structures from the point of view of Thiemann’s complexifier method. We consider
a compact Riemannian manifold and we take the complexifier to be the energy function E, equal to half the length-squared
in the fibers, so that the flow of XE is the geodesic flow. We give several different but equivalent ways of making sense of
the analytic continuation in (1.1). We then show that the resulting complex structure is the adapted complex structure.
From this point of view, we are able to give simple arguments for the known properties of the adapted complex structure,
including the Kähler potential and involution of [3].

1.3. Magnetic complex structures

In the present paper, we apply Thiemann’s method to construct a new family of complex structures on (co)tangent bun-
dles of Riemannianmanifolds, generalizing the adapted complex structure. Specifically, we consider a real-analytic Rieman-
nian manifold together with a closed real-analytic 2-form β onM , where β is interpreted as a magnetic field. The dynamics
of a charged particle moving in this magnetic field may be described as the Hamiltonian flow Φσ of the energy function E
with respect to the ‘‘twisted’’ symplectic form ωβ := ω−π∗β , where ω is the canonical 2-form on T ∗M and π : T ∗M → M
is the projection onto the base.

Following our approach in [12], we define a family of subspaces Pz(σ ) by pushing forward the (complexified) vertical
subspace by Φσ . We show that there is some R > 0 for which the following hold. First, for all z in a tube T ∗,RM , the map
σ → Pz(σ ) has an analytic continuation to a disk of radius greater than one. Second, the subspaces Pz(i) are the (1, 0)-
subspaces for an integrable almost complex structure on T ∗,RM . Third, this complex structure fits together with the sym-
plectic form ω − π∗β to give a Kähler structure on T ∗,RM . In addition, we give a local expression for a Kähler potential in
terms of a locally defined 1-form A on M with dA = β . In contrast to the case of adapted complex structures, inversion in
the fibers (the map sending each p ∈ T ∗

x M to −p) is not antiholomorphic, but rather antiholomorphically intertwines the
complex structures associated to β and −β .

In fact, Pz(σ + iτ) induces a Kähler structure on T ∗,RM for any σ + iτ ∈ D1+ε with τ > 0, both in themagnetic and β = 0
cases. In the β = 0 case, the recent papers [13], [14] give an alternate construction of this family of complex structures and
study the induced family of Kähler quantizations of T ∗,RM .

Although ourmain theorems are proved for the casewhereM is compact, the definitions alsomake sense for noncompact
M . Similar results should hold on some neighborhood of the zero-section, but such a neighborhood in the noncompact case
does not necessarily contain a tube around the zero-section.

We also compute themagnetic complex structure for the cases of a constantmagnetic field on the planeR2 and the sphere
S2. In these cases, the complex structure can be computed explicitly and exists on the whole cotangent bundle. In the plane,
we also compute explicitly a Kähler potential, and explain how it is related to the work of Krötz–Thangavelu–Xu [15] on
heat kernel analysis on Heisenberg groups.

1.4. Geodesics in the space of Kähler structures

We conclude this introduction by briefly explaining the relationship between our results and geodesics in the space of
Kähler structures. Details of this connection will appear in a subsequent work. The usual context for the study of these
geodesics is a compact symplectic manifold N , equipped with a Kähler structure (J0,ω0). One then studies the space of all
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