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1. Introduction

Quasi-steady state (QSS) phenomena occur frequently in the
modeling and analysis of chemical or biological processes. They
are particularly relevant for reduction of dimension. QSS is
nowadays frequently seen as a singular perturbation problem. But
the explicit computation of reductions may pose a substantial
problem if no a priori separation into slow and fast variables is
known. There are various methods of reduction (e.g. Kaper, Kaper
and Zagaris [1], Lee and Othmer [2], Schauer and Heinrich [3],
Stiefenhofer [4], Bothe [5], Lam and Goussis [6]), which are often
based on the classical theories of Tikhonov [7] and Fenichel [8].
Following most of these references one will generally need to
solve some implicit equation and therefore be forced to accept
approximations for the reduced system on the slow manifold. The
approach developed in [9,10] is applicable to the special case of
(autonomous) polynomial or rational ODE systems and provides
an explicit first order reduction in algorithmic manner, with the
slow manifold being contained in an algebraic variety. Since many
reaction systems are of this type (due to mass action kinetics) the
range of applicability is reasonably broad. In the present paper
we extend this approach to compartmental systems, i.e. ordinary
differential equations which model systems that are governed
by transport between subsystems and interaction within these
subsystems. In particular, we determine an asymptotic reduction
of such systems in presence of slow transport (with fast and slow
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interactions). As an important application, we develop a heuristical
method to compute a reduction of reaction-diffusion systems in
presence of slow diffusion.

The paper can be summarized as follows: In Section 2 we give
a short review of Tikhonov-Fenichel reductions (in the sense of
[9,10]) for autonomous ODEs. Assuming the existence of a kernel-
image decomposition of R™ with respect to the Jacobian of the
fast part of right-hand side h (e.g. the fast reactions of a reaction
system) at certain points in its zero set, one can determine a
reduced system in closed form by projecting the slow part of h to
its kernel component relative to the above decomposition.

In Section 3 we extend this result to compartmental ODE
systems. It turns out that the reduction can be derived from
the individual interaction terms in the subsystems alone. An
application to a SIR model is given.

In the context of reaction-diffusion systems it is known
that already finding appropriate candidates for (asymptotically)
reduced systems may be problematic. Our contribution to this
problem - discussed in Section 4 - is a heuristical method to
find such a candidate. Moreover, we show the consistency of the
proposed reduction. Our heuristic starts from considering spatially
discretized reaction-diffusion systems as compartmental systems.

In the final section, we discuss some examples. We compare our
heuristical reduction to known results in the literature and discuss
systems where no previous results seem to be known.

2. Review of Tikhonov-Fenichel reductions

While Tikhonov's theorem (see [11, Theorem 8.1]) is directly
applicable only if the variables are separated into fast and slow
ones, Fenichel overcame this problem, but generally gave no
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explicit form of the reduction. We briefly sketch a specialized
approach for polynomial and rational systems developed in
Noethen & Walcher [12,9].

LetS C R™ be open, &g > 0and h: S x [0, &g) — R™ a rational
map with zero set V(h®) = {x € U, h@(x) = 0} containing a
submanifold of positive dimension. Consider singularly perturbed
ODE systems of the type

x=hx, &) =hQx +ehPx)+-.., xeS8. (2.1)
Rewriting (2.1) in slow time T = ¢t, we get
X = Th®%) +hYx)+---, xes. (2.2)

In the following, we will refer to h® as the fast part of the evolution
equation and hV as the slow part. For this type of systems, an
explicit reduction formula was given in [10]. We state a variant
of [10, Theorem 1] (see also [ 10, Remark 2]):

Theorem 2.1. Consider system (2.1) with rational right-hand side
h. Let xo be a point in the zero set V(h@) of h©, such that
rank Dh© (xo) = r is maximal in a neighborhood of xo. Thus, there
exists a neighborhood U C S of Xg, such that U = U N V(h®) isa
(m —r)-dimensional submanifold. Assume moreover that there exists
a direct sum decomposition

R™ = ker Dh'? (xg) @ im Dh© (xo).

Then the following holds:

(a) There exists a product decomposition with
P:U—R™" and pn:U—R"

both rational, such that

h@ () = Pop®),

with rank P(xg) = rank Du(xg) = r. Moreover, the zero set Y of
u satisfies Y N U = U. The entries of u may be taken as any r
entries of h© that are functionally independent in xo.

(b) The following system is defined in U:

xelU

X =Q) -hPx)
with
Q) =1Id — P(X)(Dr(®)P(x)) " 'Du(x).

Every component of w is a first integral of (2.3). In particular, U
is an invariant set of (2.3).

(c) If all nonzero eigenvalues of Dh'® (xy) have negative real part,
then there exists T > 0 and a neighborhood U* C U of U, such
that solutions of (2.1) starting in U* converge uniformly on [to, T]
to solutions of the reduced system (2.3) on U for ¢ — 0 and any
to > 0.

(2.3)

Remark 1. In the following we will use some notions and proper-
ties regarding algebraic varieties, which we briefly summarize (for
details see Shafarevich [13]): The Zariski topology on R™ has as its
closed sets common zeros of some collection of polynomial func-
tions; these are also called (algebraic) varieties. Every such variety
Y is the union of finitely many irreducible ones (i.e. ones that are
not the union of two proper Zariski-closed sets). Each irreducible
component of Y is in turn the union of finitely many submanifolds
of R™. A point of Y is called simple if it is contained in just one ir-
reducible component and in a submanifold of maximal dimension
of that component.

Remark 2. (a) The approximation is of leading order only.

(b) More general types of invariant manifolds require a much
more intricate theory (Fenichel [14,8]) and explicit reduction
formulas (as opposed to iterative schemes) do not seem

possible in this more general setting. However, our setting is
sufficiently broad for application in the chemical and biological
context.

(c) The submanifold U is often called (asymptotic) slow mani-
fold[11,2,4,1].In physics context it is also referred to as an adia-
batic manifold [ 15]. We will also call V(h@) the slow manifold,
even if this is technically incorrect.

(d) Q (x) will be called the projection operator of h® with respect
to xg as it projects every y € R™ to its kernel component in
the kernel-image decomposition with respect to Dh® (x,). We
want to stress that Q depends on the irreducible component
containing xo.

(e) The decomposition exists if and only if geometric and algebraic
multiplicity of the eigenvalue zero are equal.

(f) If the eigenvalue condition in (c) in the theorem above is sat-
isfied, we speak of a (convergent) Tikhonov-Fenichel reduction;
otherwise, we speak of a formal Tikhonov-Fenichel reduction.

(g) There exists a constructive method to obtain the product
decomposition of @ with rational P and x (see [10, Appendix
A.3]). Thus, the reduction procedure as a whole is algorithmi-
cally accessible. We note that in many applications one will ob-
tain a decomposition by inspection.

(h) The question of projecting initial values was basically settled by
Fenichel [8, Theorem 9.1] and was discussed in detail for this
particular setting in [10] (see also the references given there;
in particular Lee and Othmer [2], Schauer and Heinrich [3] and
Stiefenhofer [4]). We briefly summarize: By [ 10, Proposition 2],
the system x = h® (x) admits m — r first integrals in a neigh-
borhood of xy. Moreover, the intersection of a common level set
of the first integrals with V(h®) consists (locally) of a single
point. Thus, to project the initial values of system (2.1)-(2.3),
one chooses the corresponding intersection point. (In general
it will not be possible to determine the first integrals, but one
can determine Taylor approximations; see [ 10, Remark 6].)

(i) The theorem stays true if h is only smooth. But the product
decomposition can - in general - no longer be constructed al-
gorithmically. In some settings (e.g. chemical reaction systems
with more general kinetics) however, the decomposition may
be found by inspection. Naturally, our results also apply to such
situations.

One may write the reduced system (2.3) in the time scale t
again:
x=e-Qx -hV(0),
whenever this simplifies a comparison with other results in the
literature (as in the next example).

The Michaelis—-Menten model is possibly the best known
example for a quasi-steady state reduction.

Example 2.2. The following reaction scheme for enzyme catalyzed
formation of product goes back to Michaelis and Menten [ 16]

k1 ko
E+S—C—=E+P.
k_1

Assuming the initial concentration (eg) of enzyme E to be a small
parameter (eg = &) and the initial concentration ¢, of the complex
C to be zero, then the reaction system reads

; _ (ks + k_q)c n —ks
) "\ —tkis+k g+ k)e) 7O\ ks ) -
—_———

=h© (s5,c)

=h(D (s,c)

According to [17, Example 5], the (convergent) Tikhonov-Fenichel
reduction is the result of a simple computation:

_ kik>seq
- k15+k_1 +k2’

This result coincides with the familiar reduction going back to
Briggs and Haldane [18].
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