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A less studied numerical characteristic of periodic orbits of area preserving twist maps of the annulus is
the twist or torsion number, called initially the amount of rotation Mather (1984) [2]. It measures the
average rotation of tangent vectors under the action of the derivative of the map along that orbit, and
characterizes the degree of complexity of the dynamics.

The aim of this paper is to give new insights into the definition and properties of the twist number and
to relate its range to the order properties of periodic orbits. We derive an algorithm to deduce the exact
value or a demi-unit interval containing the exact value of the twist number.

We prove that at a period-doubling bifurcation threshold of a mini-maximizing periodic orbit, the new
born doubly periodic orbit has the absolute twist number larger than the absolute twist of the original
orbit after bifurcation. We give examples of periodic orbits having large absolute twist number, that
are badly ordered, and illustrate how characterization of these orbits only by their residue can lead to
incorrect results.

In connection to the study of the twist number of periodic orbits of standard-like maps we introduce
a new tool, called 1-cone function. We prove that the location of minima of this function with respect
to the vertical symmetry lines of a standard-like map encodes a valuable information on the symmetric
periodic orbits and their twist number.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

rotation of tangent vectors under the action of the tangent map
along the map’s orbit. Mather related the twist number with the

The study of the dynamics of area preserving positive twist
maps of the annulus is mainly concerned with the characterization
of its invariant sets, and the dynamical behavior of a map restricted
to such sets. Among invariant sets, rotational periodic orbits have
been thoroughly studied and classified according to their linear
stability, extremal type, order properties (see [1] for a survey). A
numerical characteristic associated with a periodic orbit is the ro-
tation number, which measures the average rotation of the orbit
around the annulus. In [2] Mather defined also the amount of rota-
tion, which is called twist number in [3] or torsion number in [4].
The twist number of a periodic orbit characterizes the average
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Morse index of the corresponding critical sequence (configura-
tion), and Angenent [3] proved that in the space of (p, q)-sequences
a critical point of the W,,4-action, corresponding to a periodic orbit
of twist number greater than 0 is connected by the negative gra-
dient flow of the action, through a heteroclinic connection, with
a sequence corresponding to an orbit of zero twist number. Using
topological arguments, Crovisier [4] proved the existence of orbits
of zero-torsion (twist) number for any real number in the rotation
number set of a twist map of the annulus (not necessarily area pre-
serving).

In order to detect new classes of dynamical systems exhibiting
periodic orbits of non-zero twist (torsion), Béguin and Boubaker
gave [5] conditions ensuring that some area preserving diffeomor-
phisms of the disk D?, and particular diffeomorphisms of the torus
T2 exhibit such orbits.
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In Mather’s and Angenent’s definitions of the twist number this
a positive quantity. However its natural definition leads to a signed
number [4]. The twist number of periodic orbits of positive twist
maps is zero or negative, while for those of negative twist maps it
is zero or positive. In our approach we keep its natural sign and call
absolute twist, the absolute value of the twist number.

During almost 30 years since the definition of the twist number
was given, no periodic orbit of absolute twist number greater than
1/2 was detected in the dynamics of classical twist maps (standard
map, Fermi-Ulam map, etc.). That is why we wonder under what
conditions can such orbits appear.

From Aubry-Mather theory [6,7] it is known that non-degen-
erate minimizing and associated mini-maximizing (p, q)-type pe-
riodic orbits are well ordered and the minimizing orbit has zero
twist number. Thus it is natural to investigate whether (p, q)-
periodic orbits that are not given by this theory can be well-ordered
or not and how order properties are related to the value of their
twist number.

Our starting point was not however the study of the twist num-
ber. In an attempt to characterize the dynamical behavior of twist
maps after the breakdown of the last KAM invariant torus (the case
of standard map) or in a half annulus where no invariant circle exist
(the case of Fermi-Ulam map [8], or tokamap [9]), we identified in
the phase space of such maps, special regions where no minimiz-
ing periodic orbits can land. Instead we noticed that any periodic
orbit having at least two points in such a region is badly ordered
and typically has absolute twist greater than 1/2.

Thus we were led to a deeper study of the twist number of peri-
odic orbits, and their properties. In this paper we complement the
results on twist number reported in [2,3] and show that periodic
orbits of non-zero twist numbers are typically born through a pe-
riod doubling bifurcation. We give examples of periodic orbits that
have large absolute twist number. As far as we know no such orbits
were identified before in the study of the most known twist maps,
standard-like maps. Some of these orbits are ordered and other are
unordered. In order to explain why some twist maps can exhibit a
sequence of bifurcations of a periodic orbit leading to increasing
the absolute twist number up to its maximal value we introduce
two subclasses of standard-like maps, USF maps and TSF maps.

The paper is organized as follows. In Section 2 we give the
basic properties of twist area preserving diffeomorphisms of the
annulus, relevant to our study. In order to derive in Section 4 suffi-
cient conditions that favor the existence of ordered periodic orbits
of large absolute twist number, we set up in Section 3 a framework
of study, defining the class of twist maps exhibiting the so called
strong folding property, and a function, called 1-cone function.

The 1-cone function is defined on the phase space of a twist
map and takes negative values within the region where the map
exhibits strong folding property. We prove that the restriction of
this function to a periodic orbit gives information on the eigenval-
ues of the Hessian matrix associated with that orbit (Lemma 3.1).
Analyzing the 1-cone function associated with a standard-like
map, we show that such maps can have either a connected strong
folding region including one of the vertical symmetry lines or a
two-component strong folding region including both vertical sym-
metry lines. These results will be exploited in Section 5 to explain
the variation of the twist number.

In Section 4 we revisit the definition and properties of the twist
number of a periodic orbit based on the structure of the univer-
sal covering group of the group SL(2, R) (a system of coordinates
on this group allowing to decipher its topology is presented in Ap-
pendix B). The twist number is defined as the translation number of
acircle map induced by the monodromy matrix associated with the
periodic orbit. We review in Appendix A the properties of the trans-
lation number of an orientation preserving homeomorphism of the
unit circle and point out the particularities of the translation num-
ber of circle homeomorphisms induced by matrices in SL(2, R).

Theorem 4.2 gives the relationship between the twist number
value of a (p, q)-periodic orbit, and the position of the real number
0 with respect to the sequence of interlaced eigenvalues of the Hes-
sian matrix Hy, associated with the corresponding (p, q)-sequence,
and of a symmetric matrix derived from H,. This theorem comple-
ments results from [2,3].

Based on this theorem we derive an algorithm to deduce the ex-
act value of the twist number or a demi-unit interval that contains
the twist number.

The main result in Section 4 is the Proposition 4.1, which
shows that periodic orbits of large absolute twist number are born
through a period doubling bifurcation. More precisely it states
that if at some threshold, a period doubling bifurcation of a mini-
maximizing (p, q)-periodic orbit occurs, with transition from ellip-
tic to inverse hyperbolic orbit, then the new born 2g-periodic orbit
is elliptic, having the twist number within the interval (—1, —1/2).

In Section 5 we give examples of periodic orbits that have
large absolute twist number and are unordered. A natural ques-
tion is whether a positive twist map can also exhibit ordered (p, q)-
periodic orbits (p, g relative prime integers), of twist number less
than —1/2 (we note that periodic orbits of large absolute twist
number, born through a period doubling bifurcation are of type
(2p, 2q)). We give a positive answer to this question, giving an ex-
ample of three-harmonic standard map having an ordered (1, 2)-
periodic orbit, of twist number 7 = —1.

In order to illustrate the different range of the twist number of a
periodic orbit in the three-harmonic standard map in comparison
to that of a periodic orbit of the same type of the standard map, we
deduce (Proposition 5.1) the bifurcations that a periodic orbit of a
family of standard-like maps, with a uni-component strong folding
region, undergo necessarily.

The concrete examples of periodic orbits of large absolute twist
number, given in this section, illustrate that the classical method
used for more than 30 years in classification of periodic orbits can
lead to an erroneous conclusion.

2. Background on twist maps

We recall basic properties of twist maps, relevant to our ap-
proach. For a detailed presentation of classical results concerning
dynamics of this type of maps, the reader is referred to [10,1].

LetS! = R/Zbe the unitcircle, A = S! xR, the infinite annulus,
and 7 : R*> — A, the covering projection, 7 (x, y) = (x mod 1, y).

We consider a C'-diffeomorphism F : R> — R? F(x,y) =
(%', ¥, satisfying the following properties:

(i) F is exact area preserving map, isotopic to the identity;
(i) Fx+ 1,y) = F(x,y) + (1,0), for all (x,y) € R?;
(iii) F has uniform positive twist property, i.e. % >c>0.

The map F defines a C!-diffeomorphism, f : A — A, such that
7w oF = f om.Both mapsf and F are called area preserving positive
twist maps or simply twist maps. F is a lift of f.

In the sequel we will switch from f to F, and conversely, without
comment.

The motion of a point around the annulus is characterized by its
rotation number. The orbit of a point z € A has a rotation number
if there exists the limit:

. Xnp — X
p = lim , (1)

n—o00 n

where (x,y) € R? is alift of z, and (x,, y») = F"(x, y). The rotation
number does not depend on the chosen point z on the orbit or the
lift (x, y). For different lifts of the map f, the corresponding rotation
numbers differ by an integer.

Let p, g be two relative prime integers, q > 0.A (p, q)-type orbit
of the twist map, F, is an orbit (x,, y;,) = F"(xo, o), n € Z, such
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