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a b s t r a c t

We show that the solutions of the constant astigmatism equation that correspond to a class
of surfaces found by Lipschitz in 1887, exactly match the Lie symmetry invariant solutions
and constitute a four-dimensional manifold. The two-dimensional orbit space with respect
to the Lie symmetry group is described. Our approach relies on the link between constant
astigmatism surfaces and orthogonal equiareal patterns. The counterpart sine–Gordon so-
lutions are shown to be Lie symmetry invariant as well.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

This paper continues and complements our study [1,2] of the constant astigmatism equation

zyy + (1/z)xx + 2 = 0. (1)

This is the Gauss equation for surfaces immersed in three-dimensional Euclidean space and characterised by a constant
difference between the principal radii of curvature (named surfaces of constant astigmatism by analogy with geometrical
optics). Despite its nineteenth-century roots, see [3] for a historical account, Eq. (1) appears to have been missed until [1].
The same equation states that the metric

z dx2 + (1/z) dy2 (2)

is of Gaussian curvature +1 and, therefore, is an admissible metric of the sphere; cf. Bianchi [4, Section 375, Eq. (20)] in the
context of pseudospherical congruences.

The two interpretations of Eq. (1) are closely related. Indeed, formula (2) characterises the third fundamental forms of the
constant astigmatism surfaces, see [2]. It follows that solutions z(x, y) of Eq. (1) must be positive valued to be geometrically
meaningful.

One can only speculate why constant astigmatism surfaces fell into oblivion throughout most of the twentieth century.
Our own motivation behind the revival of the subject is to pursue application of contemporary solution methods to Eq. (1);
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this interest is shared with the authors of [5,6]. A review of known exact solutions is not only a useful prerequisite, but also
a debt to the history.

The most important nineteenth-century result of Bianchi [7,4] establishes a correspondence between constant
astigmatism and pseudospherical surfaces, the latter being evolutes of the former. This link leads to transformation formulas
between solutions z(x, y) of Eq. (1) and q(ξ , η) of the sine–Gordon equation

qξη = sin q, (3)

investigated and exploited elsewhere [1,2].
In 1887 Lipschitz [8] presented a completely different class of surfaces of constant astigmatism in terms of spherical

coordinates of the Gaussian image. It is not easy to see what are the corresponding solutions z(x, y) and q(ξ , η). However,
Lipschitz’s derivation points to a hidden relationship to orthogonal equiareal patterns on the sphere. By the latter we mean
coordinate systems such that the sphere’s metric acquires the form (2). A physical interpretation, see [2], says that the
principal stress lines of a plastic round sphere under the Tresca yield condition constitute an orthogonal equiareal pattern,
cf. [9,10] for the planar case. Moreover, the slip-lines are curves forming an angle of π/4 with the principal stress lines.
Remarkably enough, slip line fields on the sphere are determined by the sine–Gordon solutions q(ξ , η); see [2].

In the present paper, by re-deriving the Lipschitz class in terms of the orthogonal equiareal patterns, we easily compute
the corresponding solutions z(x, y) of the constant astigmatism equation. The solutions turn out to be double-valued and
constituting a four-dimensionalmanifold.Moreover,we show that they exactlymatch the solutions invariantwith respect to
the Lie symmetries of the constant astigmatism equation (see below). The above-mentioned manifold of solutions is acted
upon by the Lie symmetry group, the orbit space being two-dimensional. Finally, in Section 3 we find the corresponding
sine–Gordon solutions; they turn out to be symmetry invariant as well, and actually well known.

The Lie symmetries of the constant astigmatism equation (1) are the translations Tx
: (x, y, z) → (x + t, y, z), Ty

:

(x, y, z) → (x, y + t, z), and the scaling S : (x, y, z) → (e−tx, ety, e2tz), where t is a real parameter. This is an exhaustive
list of one-parametric groups of contact transformations, obtained through a routine computation of infinitesimal generators
(generating functions)

tx = zx, ty = zy, s = xzx − yzy + 2z (4)

(see [11] for the general theory or [12] for an overview). Also useful will be the discrete symmetry I : x → y, y → x, z →

1/z, called the involution.
For future reference, we single out the solutions

z = α2
− (y + β)2, z =

1
α2 − (x − β)2

, (5)

where α, β denote arbitrary real constants. They are easy to obtain as the solutions independent of x or y, respectively. Fol-
lowing [1], we call them the von Lilienthal solutions, since they correspond to the constant astigmatism surfaces of revolution
studied by von Lilienthal [13].

2. Lipschitz solutions

Consider the Gaussian sphere n = (cosφ sin θ, sinφ sin θ, cos θ) parameterised by the colatitude (polar angle) 0 ≤ θ ≤

π and the longitude 0 ≤ φ ≤ 2π . To specify an orthogonal equiareal pattern, we let θ, φ denote yet unknown functions
of parameters x, y. Lipschitz defines a position angle (Stellungswinkel) to be the angle ω between the meridians nθ and the
pattern’s lines y = const, i.e., nx = φxnφ +θxnθ . The Lipschitz class is specified by letting the position angleω depend solely
on the colatitude θ . The corresponding solution of the constant astigmatism equation will be called the Lipschitz solution. As
we shall prove immediately below, a generic Lipschitz solution is two-valued and depends on four real parameters.

Theorem 1. The general Lipschitz solution of the constant astigmatism equation (1) depends on four real parameters h11, h10,
h01, h00 and is a nonzero root of the quadratic polynomial

h2
yz

2
+ (h2

− 1)z + h2
x , (6)

where

h = h11xy + h10x + h01y + h00,

hy = h11x + h01, hx = h11y + h10,

under the condition that h is not a constant (i.e., at least one of the coefficients h11, h10, h01 is not zero).

Proof. Expressing the metric of the sphere in two ways, we have

dθ2
+ sin2 θdφ2

= zdx2 + (1/z)dy2,
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