Contents lists available at ScienceDirect

# Journal of Geometry and Physics

journal homepage: www.elsevier.com/locate/jgp

# Symmetries of filtered structures via filtered Lie equations

# Boris Kruglikov\*

Institute of Mathematics and Statistics, University of Tromsø, Tromsø 90-37, Norway

### ARTICLE INFO

#### Article history: Received 29 January 2014 Received in revised form 14 April 2014 Accepted 12 May 2014 Available online 15 May 2014

#### MSC: 58A30 34C14 35A30 58170 34H05

Keywords: Vector distribution Symmetry Tanaka algebra Lie equation Filtered structure Weighted symbol

## 1. Introduction and the main result

Consider a manifold M and a non-holonomic (bracket generating) vector distribution  $\Delta \subset TM$ , possibly equipped with an additional structure, like sub-Riemannian metric or conformal or CR-structure. A specification of these filtered structures is provided below.

Given such a structure, a sheaf of graded Lie algebras  $\mathfrak{g} = \oplus \mathfrak{g}_i$  is naturally associated with it. If we consider only the distribution  $\Delta$ , then  $\mathfrak{m}(x) = \mathfrak{g}_{-}(x)$  is the well-known graded nilpotent Lie algebra (GNLA: nilpotent approximation or Carnot algebra) at  $x \in M$ , and  $\mathfrak{g}(x)$  is its Tanaka prolongation (Tanaka algebra). If an additional structure on  $\Delta$  is given, then  $\mathfrak{g}_0$ or some higher  $\mathfrak{g}_i$  (i > 0) is reduced and the algebra is further prolonged. In any case for a filtered structure  $\mathcal{F}$  on M we associate its sheaf of Tanaka algebras  $g(x), x \in M$ .

**Theorem 1.** The symmetry algebra & (possibly infinite-dimensional) of a filtered structure  $\mathcal{F}$  has the natural filtration with the associated grading s naturally injected into  $\mathfrak{g}(x)$  for any regular point  $x \in M$ . In particular,

 $\dim \delta \leq \sup \dim \mathfrak{g}(x).$ 

Provided that the filtered structure is of finite type ( $\mathfrak{g}_{\kappa}(x) = 0$  for some  $\kappa > 0$  and all  $x \in M$ ), the right-hand-side can be changed to  $\inf_M \dim \mathfrak{g}(x)$ .

\* Tel.: +47 77644779: fax: +47 77644765. E-mail address: boris.kruglikov@uit.no.

## ABSTRACT

We bound the symmetry algebra of a vector distribution, possibly equipped with an additional structure, by the corresponding Tanaka algebra. The main tool is the theory of weighted jets.

© 2014 Elsevier B.V. All rights reserved.







http://dx.doi.org/10.1016/j.geomphys.2014.05.009 0393-0440/© 2014 Elsevier B.V. All rights reserved.

If  $\Delta$  is considered without an extra structure, then this statement was proved in [1] by studying the Lie equation considered as a submanifold in the usual jet-space. In addition to the above mentioned type structures we can impose curvature of the structure as a reduction of g (see Remark 3 in Section 3 on the issue of regularity), thus essentially restricting the symmetry algebra, yielding a bound on the gap between the maximal and the next (submaximal) dimensions of the possible symmetry algebras of the given type structures [2]. In the context of parabolic geometries (in the complex-holomorphic or split-real smooth cases) this gap was fully computed using the above idea in [3].

Regularity for the points x in Theorem 1 is defined via the Lie equations in Section 4. When sup dim  $\mathfrak{g}(x)$  is finite (that is  $\mathcal{F}$  is of finite type) or the filtered structure  $\mathcal{F}$  is analytic, then the set of regular points is open and dense; in general a generic point is regular.

In this paper we consider weighted jets and relate them to Tanaka algebras. On this way we obtain another proof of Theorem 1 of [1] and get a more general result.

## 2. Tanaka algebra of a distribution with a structure

Given a distribution  $\Delta$  its weak derived flag  $\{\Delta_i\}_{i>0}$ , with  $\Delta_1 = \Delta$ , is given via the module of its sections by  $\Gamma(\Delta_{i+1}) = [\Gamma(\Delta), \Gamma(\Delta_i)]$ . The distribution  $\Delta$  will be assumed completely non-holonomic, meaning there exists a natural number  $\nu$  such that  $\Delta_{\nu} = TM$ .

The quotient  $\mathfrak{g}_i = \Delta_{-i}/\Delta_{-i-1}$  (we let  $\Delta_0 = 0$ ) evaluated at the points  $x \in M$  is not a vector bundle in general (rank needs not be constant); however its local sections form a sheaf and the module of its global sections will be denoted by  $\Gamma(\mathfrak{g}_i)$  (similarly for other sheafs).

At every point  $x \in M$  the vector space  $\mathfrak{m} = \bigoplus_{i < 0} \mathfrak{g}_i$  has a natural structure of graded nilpotent Lie algebra. The bracket on  $\mathfrak{m}$  is induced by the commutator of vector fields on M.  $\Delta$  is called *strongly regular* if the GNLA  $\mathfrak{m} = \mathfrak{m}_x$  does not depend on the point  $x \in M$ .

The Tanaka prolongation  $\mathfrak{g} = \hat{\mathfrak{m}}$  is the graded Lie algebra with negative graded part  $\mathfrak{m}$  and non-negative part defined successively by (see [4] for discussion and interpretation of this prolongation)

$$\mathfrak{g}_k = \left\{ u \in \bigoplus_{i < 0} \mathfrak{g}_{k+i} \otimes \mathfrak{g}_i^* : u([X, Y]) = [u(X), Y] + [X, u(Y)], \ X, Y \in \mathfrak{m} \right\}.$$

Since  $\Delta$  is bracket-generating, the algebra m is fundamental, i.e.  $\mathfrak{g}_{-1}$  generates the whole GNLA m, and therefore the grade k homomorphism u is uniquely determined by the restriction  $u : \mathfrak{g}_{-1} \to \mathfrak{g}_{k-1}$ .

At every point  $\mathfrak{g} = \oplus \mathfrak{g}_i$  is naturally a graded Lie algebra, called the *Tanaka algebra* of  $\Delta$  (the bracket is induced by the commutator of vector fields). To indicate dependence on the point  $x \in M$ , we will write  $\mathfrak{g} = \mathfrak{g}(x)$  or  $\mathfrak{g}_x$  (also the value of a vector field Y at x will be denoted by  $Y_x$ ).

In addition to introducing the Lie algebra  $\mathfrak{g}$ , which majorizes the symmetry algebra of  $\Delta$ , the paper [5] contains the construction of an important ingredient to the equivalence problem—an absolute parallelism on the prolongation manifold  $\mathfrak{g}_i$  of the structure, provided it is strongly regular.

Distribution is locally flat if the structure functions of the absolute parallelism vanish. Then the distribution  $\Delta$  is locally diffeomorphic to the standard model on the Lie group corresponding to m, see [5].

The prolongation manifolds are the total spaces of the bundles  $g_i \to M$  (in the strongly regular case). For instance, the fiber of  $g_0$  over x consists of all grading preserving isomorphisms of Lie algebras  $u_0 : \mathfrak{m} \to \mathfrak{m}_x$ , where  $\mathfrak{m}$  is an abstract GNLA of the same type as  $\mathfrak{m}_x$ . Denoting by  $\operatorname{Aut}_0(\mathfrak{m})$  the group of grading preserving automorphisms of  $\mathfrak{m}$ , we conclude that  $g_0$  is a principal  $\operatorname{Aut}_0(\mathfrak{m})$ -bundle over M; the tangent to the fiber is the Lie algebra  $\mathfrak{der}_0(\mathfrak{m})$  of grading preserving derivations of  $\mathfrak{m}$ . The fiber of  $g_1$  over  $u_0 \in g_0$  consists of the adapted frames  $u_1 : \mathfrak{g}_{-1} \to \mathfrak{g}_0$  that uniquely extend to the grading -1 maps  $u_1 : \mathfrak{m} \to \mathfrak{m} \oplus \mathfrak{g}_0$  etc., see [6] for details.

The idea of constructing the frame bundle can be pushed to the general non-strongly regular case. Here an abstract reference algebra m is lacking<sup>1</sup> and the 0-frames are grading preserving isomorphisms  $u_0 : \mathfrak{m}_x \to \mathfrak{m}_x$ . Thus  $\mathfrak{g}_0$  is a fiber bundle (having a distinguished 'identity' section), with the fiber over x being the graded group  $\operatorname{Aut}_0(\mathfrak{m}_x)$ . Again the fiber of  $\mathfrak{g}_1$  over  $u_0(x) \in \mathfrak{g}_0$  is parametrized by the adapted frames  $u_1 : \mathfrak{g}_{-1}(x) \to \mathfrak{g}_0(x)$  etc. The fibers of  $\mathfrak{g}_i \to \mathfrak{g}_{i-1}$  for i > 0 are isomorphic to  $\mathfrak{g}_i$ .

Notice that in general, the prolongation manifolds  $g_i$  can be singular, when the fibers have varying dimensions. The structure is called *regular* at the point *x* if for every *i* the spaces  $g_i(y)$  have constant ranks and vary smoothly in *y* from a neighborhood of *x* (the size of which can depend on *i*). The structure is called *regular* if it is regular at every point on *M*. It is clear that strongly regular distributions have regular prolongations. For regular distributions the above  $g_i$  are smooth fiber bundles over *M*.

The following statement is similar to [1, Lemma 6] and [3, Lemma 4.2.4], so its proof is omitted.

**Proposition 1.** For every *i* the set of points *x*, where rank  $g_i(x)$  is locally constant is open and dense in *M*.

<sup>&</sup>lt;sup>1</sup> This manifests lacking of a canonical absolute parallelism, though it is possible to construct a parallelism respected by any automorphism.

Download English Version:

# https://daneshyari.com/en/article/1895600

Download Persian Version:

https://daneshyari.com/article/1895600

Daneshyari.com