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h i g h l i g h t s

• The explicit formulas for kink and breather solutions are derived.
• The method can be used to construct multi-soliton solutions.
• The soliton interactions are studied in detail.
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a b s t r a c t

In this paper, we develop the dressing method to study the exact solutions for the vector sine-Gordon
equation. The explicit formulas for one kink and one breather are derived. The method can be used to
constructmulti-soliton solutions. Two soliton interactions are also studied. The formulas for position shift
of the kink and position and phase shifts of the breather are given. These quantities only depend on the
pole positions of the dressing matrices.
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1. Introduction

This paper is devoted to the study of an O(n)-invariant general-
isation of the sine-Gordon equation

Dt


α⃗x

β


= α⃗, β2

+ ⟨α⃗, α⃗⟩ = 1, (1)

where the dependent variable α⃗ = (α1, . . . , αn)T is n-dimensional
real vector field and β ∈ R. Here and in what follows the upper in-
dex T denotes the transpose of a vector or a matrix. We use the
notation ⟨·, ·⟩ for the Euclidean dot product of two vectors.

Eq. (1) first appeared in [1] was viewed as a reduction of
the two-dimensional O(n) nonlinear σ -model [2]. Its integrabil-
ity properties were further studied afterwards. The Lax pairs were
given in [3] and its Lagrangian formulation in [4]. Later, this equa-
tion reappeared in the study of connection between finite dimen-
sional geometry, infinite dimensional geometry and integrable
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systems [5]. It was derived as the inverse flow of the vector
modified Korteweg–de Vries equation

u⃗τ = u⃗xxx +
3
2
⟨u⃗, u⃗⟩u⃗x, u⃗ =

α⃗x

β
, (2)

whoseHamiltonian, symplectic andhereditary recursion operators
were naturally derived using the structure equation for the
evolution of a curve embedded in an n-dimensional Riemannian
manifold with constant curvature [6]. These have been recently re-
derived in [7]. Besides, a partial classification of vector sine-Gordon
equations using symmetry tests was done in [8].

Eq. (1) is a higher-dimensional generalisation of the well-
known scalar sine-Gordon equation

θxt = sin θ. (3)

Indeed, it can be obtained by taking the dimension n = 1 and
letting β = cos θ and α1

= sin θ . The scalar sine-Gordon
equation originates in differential geometry and has profound
applications in physics and in life sciences (see recent review [9]).
Vector generalisations of integrable equations have proved to be
useful in applications [10]. They can be associated with symmetric
spaces [11].
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The rational dressing method was originally proposed in [2,12]
and developed in [13]. Thismethod enables one to constructmulti-
soliton solutions and analyse soliton interactions in detail using
basic knowledge of Linear Algebra. In this paper, we develop the
dressing method for the vector sine-Gordon equation (1) and
show that similar to the scalar sine-Gordon equation (3) there are
two distinct types of solitons, namely kinks and breathers. One
kink solution is a stationary wave propagating with a constant
velocity. We show that a kink solution of the vector sine-Gordon
equation can be obtained from a kink solution of (3) by setting
α⃗ = a sin θ, β = cos θ , where a is a constant unit length vector
in Rn. A general two kink solution of (1) cannot be obtained from
solutions of (3), but it can be seen as a two kink solution of a vector
sine-Gordon equation (1) with n = 2. One breather solution is a
localised and periodically oscillating wave moving with a constant
velocity. One breather solution of the generalO(n) invariant Eq. (1)
can be obtained from a breather solution of (1) with n = 2
by an appropriate O(n) rotation. Two breathers solution can be
obtained from the corresponding solution of (1) with n = 4, etc.
Surprisingly, the effects of interaction, such as the displacement
and a phase shift (for breathers) are exactly the same as in the
case of the scalar sine-Gordon equation (3) [14]. Such interaction
properties are naturally valid for the vectormodified Korteweg–de
Vries equation (2). The detailed study of soliton interactions for (2)
when n = 2 can be found in [15].

2. Dressing method for the vector sine-Gordon equation

In this section, we begin with the Lax representation of the
vector sine-Gordon equation (1) given in [5], which is invariant
under the reduction group Z2 × Z2 × Z2. We then study the
conditions for the dressing matrix (assumed to be rational in
spectral parameter) with the same symmetries. The 1-soliton
solutions of (1) correspond to the dressingmatrix with only simple
poles belonging to a single orbit of the reduction group. For one
kink, it has two pure imaginary simple poles and for one breather,
it has four complex simple poles. Using the dressing method, we
explicitly derive one kink and one breather solutions starting with
a trivial solution.

The vector sine-Gordon equation (1) is equivalent to the
compatibility condition [5] [L, A] = 0 for two linear problems

LΨ = 0, AΨ = 0, (4)

where

L = Dx − λJ − U and A = Dt + λ−1V , (5)

and

J =

 0 1 0T

−1 0 0T

0 0 0n

 , U =

0 0 0T

0 0 −α⃗T
x /β

0 α⃗x/β 0n

 ,

V =

 0 β α⃗T

−β 0 0T

−α⃗ 0 0n

 ,

(6)

where 0 is n-dimensional zero column vector and 0n is the n × n
zero matrix. Without causing confusion, we sometimes simply
write 0 instead.

The Lax operators L and A are invariant under the (reduction)
group of automorphisms generated by the following three
transformations: the first one is

ι : L(λ) → −LĎ(λ), (7)

where LĎ(λ) is the adjoint operator defined by LĎ(λ) = −Dx −

λJT − UT . The invariance under this transformation implies the
matrices J and U are skew-symmetric. The second one is

r : L(λ) → L(λ̄), (8)

where L(λ) means its complex conjugate. The invariance under
this transformation reflects that the entries of matrices U and V
are real. The last one is called Cartan involution

s : L(λ) → QL(−λ)Q , (9)

whereQ = diag(−1, 1, . . . , 1), which leads to the reduction to the
symmetric space.

These three commuting transformations satisfy

ι2 = r2 = s2 = id

and therefore generate the groupZ2×Z2×Z2. Indeed, the operator
A is also invariant under it, that is,

ι(A(λ)) = A(λ), r(A(λ)) = A(λ),

s(A(λ)) = A(λ).
(10)

Thus we say the Lax representation of (1) is invariant under the
reduction group [13,16,17] Z2 × Z2 × Z2.

In what follows, we use the method of rational dressing
[2,12,13] to construct new exact solutions of (1) starting from an
exact solution α⃗0, β0. Let us denote by U0, V0 the matrices U, V in
which α⃗, β are replaced by the exact solution α⃗0, β0 of (1). The
corresponding overdetermined linear system

L0Ψ0 = (Dx − λJ − U0)Ψ0 = 0

A0Ψ0 = (Dt + λ−1V0)Ψ0 = 0
(11)

has a fundamental solutionΨ0(λ, x, t) invariant under transforma-
tions (7)–(9). Following [2,12] we shall assume that the fundamen-
tal solution Ψ (λ, x, t) for the new (‘‘dressed’’) linear problems

LΨ = (Dx − λJ − U)Ψ = 0 AΨ = (Dt + λ−1V )Ψ = 0 (12)

is of the form

Ψ = Φ(λ)Ψ0, detΦ ≠ 0, (13)

where the dressing matrix Φ(λ) is assumed to be rational in
the spectral parameter λ and to be invariant with respect to
symmetries

Φ(λ)−1
= ΦT (λ), Φ(λ̄) = Φ(λ),

QΦ(−λ)Q = Φ(λ).
(14)

Conditions (14) guarantee that the corresponding Lax operators L
and A are invariant with respect to transformations (7)–(9).

It follows from (11)–(13) that

Φ(Dx − λJ − U0)Φ
−1

= −λJ − U; (15)

Φ(Dt + λ−1V0)Φ
−1

= λ−1V . (16)

These equations enable us to specify the form of the dressing
matrix Φ and construct the corresponding ‘‘dressed’’ solution α⃗, β
of the vector sine-Gordon equation (1).

Let us consider the most trivial case when the dressing matrix
Φ does not depend on the spectral parameter λ. In this case the
dressing results in a point transformation (O(n) rotation) of the
initial solution α⃗0.

Proposition 1. Assume that Φ is a λ independent dressingmatrix for
the vector sine-Gordon equation (1). If it is invariant with respect to
symmetries (14), then

Φ = ±

1 0 0T

0 1 0T

0 0 Ω

 , (17)

where Ω ∈ O(n, R) is a constant (x, t-independent) matrix. The
corresponding ‘‘dressed’’ solution is α⃗ = Ω α⃗0, β = β0.
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