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h i g h l i g h t s

• Borning of limit cycles from a continuum of homoclinic and heteroclinic connections.
• Bifurcation characterized by the birth of a limit cycle from a continuum of equilibria.
• The Morris–Lecar model for the activity of a single neuron activity is studied.
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a b s t r a c t

We consider continuous piecewise-linear differential systems with three zones where the central one
is degenerate, that is, the determinant of its linear part vanishes. By moving one parameter which is
associated to the equilibrium position, we detect some new bifurcations exhibiting jump transitions both
in the equilibrium location and in the appearance of limit cycles. In particular, we introduce the scabbard
bifurcation, characterized by the birth of a limit cycle from a continuum of equilibrium points.

Someof the studied bifurcations are detected, after an appropriate choice of parameters, in a piecewise
linear Morris–Lecar model for the activity of a single neuron activity, which is usually considered as a
reduction of the celebrated Hodgkin–Huxley equations.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction and statement of main results

The family of piecewise linear differential systems has become
an important class of differential systems, due to its capability
to model a large number of engineering problems, see [1–4] and
references therein, as well as models from mathematical biology,
see [5–8]. Despite of its seeming simplicity, there still are unsolved
problems regarding stability and bifurcation issues.

In the case of planar systemswith two linearity zones separated
by a straight line, a lot of effort has been devoted to characterize
the maximal number of limit cycles in the discontinuous setting
[9–15], since the continuous case was already solved in [16], see
also [17]. However, keeping the continuity of the vector field and
dealing even with problems in low-dimensional phase spaces, the
study of their dynamics is not completely done.

In this work, we want to clarify some bifurcation phenom-
ena that can appear in planar continuous piecewise linear (CPWL)
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differential systemswith three zones, without any special symme-
try conditions but under a specific degeneracy. In particular, we
consider the consequences of the vanishing of the determinant for
the Jacobian matrix of the central zone. As will be shown, this hy-
pothesis leads to a discontinuous behavior in the evolution of the
equilibrium point with respect to the selected bifurcation param-
eter; this fact is rather counter-intuitive as long as the vector field
depends continuously on such parameter.

Furthermore, regarding dynamic bifurcations, we reproduce
some boundary equilibrium bifurcations leading to limit cycles. In
particular, we find:

– an explosive generation of a limit cycle from a continuum of
homoclinic and heteroclinic connections, similar to the one
studied in [18];

– the generation of small limit cycles that grow linearly in
amplitude with the bifurcation parameter, as in [17]; and

– we also encounter some specific bifurcations, as the introduced
scabbard bifurcation, characterized by the birth of a limit cycle
from a continuum of equilibrium points which, up to the best
of our knowledge, has not been reported in the literature.
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We focus our attention on piecewise linear differential systems
with three different regions separated by parallel straight lines,
which can be assumed without loss of generality to be the lines
x = −1 and x = 1, see [19]. Thuswehave three regions of linearity,
namely

SL = {(x, y) ∈ R2
: x < −1}, SC = {(x, y) ∈ R2

: −1 < x < 1}

and

SR = {(x, y) ∈ R2
: x > 1},

separated by the straight lines

Σ± = {(x, y) ∈ R2
: x = ±1}.

Furthermore, it is rather usual for these systems to exhibit only one
equilibriumpoint, whose position can be controlled bymoving one
parameter. This happens in particular when all the determinants
of the involved linear parts are positive. Then, under these generic
assumptions, see [19], and denoting with α the main bifurcation
parameter, our CPWL systems can be written in the Liénard form

ẋ = F(x) − y,
ẏ = g(x) − α,

(1)

where the dot denotes derivativeswith respect to a time variable τ ,

F(x) =

tR(x − 1) + tC , if x ≥ 1,
tCx, if |x| ≤ 1,
tL(x + 1) − tC , if x ≤ −1,

(2)

and

g(x) =

dR(x − 1) + dC , if x ≥ 1,
dCx, if |x| ≤ 1,
dL(x + 1) − dC , if x ≤ −1.

Note that the three matrices ruling the dynamics in system (1) are
tL −1
dL 0


,


tC −1
dC 0


,


tR −1
dR 0


,

where tZ and dZ with Z ∈ {L, C, R} denote the trace and determi-
nant in each linear zone.

Note that the above formulation includes as particular cases the
following ones. If tC = tL and dC = dL then we have a system with
only two different linearity zones, thoroughly analyzed in [16]. If
tR = tL, dR = dL and α = 0, then we have a symmetric system
with three different linearity zones, thoroughly analyzed in [20].
Non-symmetric systemswere considered in [21,22]. A simpler case
included into the previous formulation was studied in [23], where
authors consider the non-generic situation dR > 0, tR = 0 and
dC > 0.

Remark 1. Note that CPWL systems are Lipschitz and so they
satisfy the standard results on existence anduniqueness of solution
aswell as their continuous dependence respect to initial conditions
and parameters. In fact, the solutions are functions of class C1 and
we emphasize that several classical results of the qualitative theory
of planar differential systems, see [24], and in particular Poincaré-
Bendixson’s and Dulac’s theorems can be adequately extended to
cover these CPWL systems.

Our initial assumption on the uniqueness of equilibrium point
required the determinants in all the three zones to be positive.
In this paper we will consider instead a degenerate situation by
assuming that the determinant in the central zone vanishes, that is,
dC = 0, keeping the original assumptions dL, dR > 0. This setting
arises in a natural way when one wants to analyze certain Petri
nets, see for instance [25]. By considering the second equation in
(1), equilibrium points should be located at points (x, y) = (x̄, ȳ),

Fig. 1. The graph of x̄ in terms of parameter α.

where x̄ is any solution of g(x) = α and ȳ = F(x̄), being now

g(x) =

dR(x − 1), if x ≥ 1,
0, if |x| ≤ 1,
dL(x + 1), if x ≤ −1.

(3)

Thus, regarding the equilibrium solutions of system (1)–(3), we can
state the first consequence of the above assumptions. The proof of
this first result is straightforward and will be omitted.

Lemma 1. The following statements hold for system (1)–(3).
(a) For α < 0 the system has only one equilibrium point, which is in

the left zone, namely at

eL = (x̄L, ȳL) =


−1 +

α

dL
,
αtL
dL

− tC


.

(b) For α = 0 the system has a continuum of non-isolated equilib-
rium points, which are in the central zone, namely at every point
of the segment

EC = {(x̄, ȳ) : −1 ≤ x̄ ≤ 1, y = tC x̄}.
(c) For α > 0 the system has only one equilibrium point, which is in

the right zone, namely at

eR = (x̄R, ȳR) =


1 +

α

dR
,
αtR
dR

+ tC


.

It should be noticed that, when α passes through the critical
value α = 0, the system exhibits a jump transition in the
equilibrium position from the left zone to the right one, see Fig. 1.
This transition can be also associated to a change in the stability
and topological type of the equilibrium, depending on the values of
the linear invariants tZ , dZ of the external zones, where Z ∈ {L, R}.
Also, as it will be later shown, the transition could be accompanied
with the appearance or disappearance of a limit cycle. In this
sense, regarding the traces tL, tC , tR of each zone, we know from
Bendixson theory that they all cannot have the same sign to allow
the existence of limit cycles.

Since the number of different possibilities is high, here we only
consider the cases where tL < 0 and tR > 0, so that the transition
is associated to passing from one stable equilibrium point to one
unstable one. Once restricted to such case, wemust distinguish the
different signs of the trace tC and the different possible dynamics in
the external zones (focus or node). To halve the length of our study,
wewill impose that the dynamics in the right zone is of focus type,
that is, we will assume t2R − 4dR < 0.

Whenever we have a focus dynamics in an external zone, it is
convenient to introduce some crucial parameters, namely

γZ =
tZ
2ωZ

, where ωZ =


dZ −

t2Z
4

(4)
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