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a b s t r a c t

We study the stability and instability of periodic travelingwaves in the vicinity of the origin in the spectral
plane, for equations of Benjamin–Bona–Mahony (BBM) and regularized Boussinesq types permitting
nonlocal dispersion. We extend recent results for equations of Korteweg–de Vries type and derive
modulational instability indices as functions of the wave number of the underlying wave. We show that a
sufficiently small, periodic traveling wave of the BBM equation is spectrally unstable to long wavelength
perturbations if thewave number is greater than a critical value and a sufficiently small, periodic traveling
wave of the regularized Boussinesq equation is stable to square integrable perturbations.

Published by Elsevier B.V.

1. Introduction

We study the stability and instability of periodic traveling
waves for some classes of nonlinear dispersive equations, in par-
ticular, equations of Benjamin–Bona–Mahony (BBM) type

ut + M(u + u2)x = 0 (1.1)

and regularized Boussinesq type

utt − M2(u + u2)xx = 0. (1.2)

Here, t ∈ R is typically proportional to elapsed time and x ∈ R is
the spatial variable in the primary direction of wave propagation;
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u = u(x, t) is real valued, representing the wave profile or a veloc-
ity. Throughout we express partial differentiation either by a sub-
script or using the symbol ∂ . Moreover M is a Fourier multiplier,
defined via its symbol asMf (k) = m(k)f (k)
and characterizing dispersion in the linear limit. Note that

m(k) = the phase speed and (km(k))′ = the group speed.
(1.3)

Throughout the prime means ordinary differentiation.

Assumption 1.1. We assume that

(M1) m is real valued and twice continuously differentiable,
(M2) m is even and, without loss of generality,m(0) = 1,
(M3) C1|k|α < m(k) < C2|k|α for |k| ≫ 1 for some α > −1 and

C1, C2 > 0,
(M4) m(k) ≠ m(nk) for all k > 0 and n = 2, 3, . . . .
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Assumption (M1) ensures that the spectra of the associated
linearized operators depend in the C1 manner on the (long
wavelength) perturbation parameter; here we are not interested
in achieving aminimal regularity requirement. Assumption (M2) is
to break that (1.1), or (1.2), is invariant under spatial translations.
Assumption (M3) ensures that periodic traveling waves of (1.1) or
(1.2) are smooth, among others. Assumption (M4) rules out the
resonance between the fundamental mode and a higher harmonic.

The present treatment worksmutatis mutandis for a broad class
of nonlinearities. Here we assume for simplicity the quadratic
power-law nonlinearity. Incidentally it is characteristic of numer-
ous wave phenomena.

In the case of M = (1 − ∂2
x )

−1, note that (1.1) reduces to the
BBM equation

ut − uxxt + ux + (u2)x = 0, (1.4)

which was proposed in [1], as an alternative to the Korteweg–de
Vries (KdV) equation

ut + ux + uxxx + (u2)x = 0, (1.5)

to model long waves of small but finite amplitude in a channel of
water. In the case of M2

= (1 − ∂2
x )

−1, moreover, (1.2) reduces to
the regularized Boussinesq equation

utt = uxxtt + uxx + (u2)xx. (1.6)

It does not explicitly appear in the work of Boussinesq. But (280)
in [2], for instance, after several ‘‘higher order terms’’ drop out,
becomes equivalent towhatWhithamderived in [3, Section 13.11].
Under the assumption that ut + ux is small (which implies right
running waves), one may, in turn, derive (1.6), or the singular
Boussinesq equation

utt = uxxxx + uxx + (u2)xx. (1.6′)

Moreover (1.6) finds relevance in other physical situations such as
nonlinear waves in lattices; see [4], for instance. The phase speed
of a plane wave solution with the wave number k of the linear part
of (1.6) is (see (1.3))

1
1 + k2

= 1 −
1
2
k2 + O(k4) for k ≪ 1,

and it agrees up to the second order with the phase speed
√
1 − k2

for (1.6′) when k is small. Hence (1.6) and (1.6′) are equivalent
for long waves. But (1.6) is preferable over (1.6′) for short and
intermediately long waves. As a matter of fact, the initial value
problem associated with the linear part of (1.6′) is ill-posed,
because a plane wave solution with k > 1 grows unboundedly,
whereas arbitrary initial data lead to short time existence for (1.6).
Note that (1.2) factorizes into two sets of (1.1) — onemoving to the
left and the other to the right.

Related to (1.1) and (1.2) are equations of KdV type

ut = (Mu + u2)x. (1.7)

Note that (1.1), (1.2) and (1.7) share the dispersion relation in
common, but their nonlinearities are different. They are nonlocal
unless m, or m−1 in the case of (1.1) and (1.2), is a polynomial
in ik. Examples include the Benjamin–Ono equation, for which
m(k) = |k| in (1.7), and the intermediate long wave equation, for
which m(k) = k coth k in (1.7). Another example, which Whitham
proposed in [3] to argue for wave breaking in shallow water,
corresponds to m(k) =

√
tanh k/k in (1.7); see [5], for instance,

for details.
By a traveling wave of (1.1), (1.2) or (1.7), we mean a solution

which progresses at a constant speed without change of form. For
a broad class of dispersion symbols, periodic traveling waves with

small amplitude may be attained from a perturbative argument,
for instance, a Lyapunov–Schmidt reduction; see Appendix A for
details. We are interested in their stability and instability in the
vicinity of the origin in the spectral plane. Physically, it amounts
to long wavelength perturbations or slow modulations of the
underlying wave.

Whitham in [6,7] (see also [3]) developed a formal asymptotic
approach to study the effects of slow modulations in nonlinear
dispersive waves. Since then, there has been considerable inter-
est in the mathematical community in rigorously justifying pre-
dictions from Whitham’s modulation theory. Recently in [8–11]
(see also [12]), in particular, long wavelength perturbations were
carried out analytically for (1.7) and for a class of Hamiltonian
systems permitting nonlocal dispersion, for which Evans function
techniques and other ODEmethodsmay not be applicable. Specifi-
cally, modulational instability indices were derived either with the
help of variational structure (see [8]) or using asymptotic expan-
sions of the solution (see [9–11]).

Theorem 1.2 ([10,11]). Under Assumption 1.1, a 2π/k-periodic
traveling wave of (1.7) with sufficiently small amplitude is spectrally
unstable with respect to long wavelength perturbations if

indKdV (k) :=
i1(k)i−2 (k)iKdV (k)

i−3 (k)
< 0, (1.8)

where

i1(k) = (km(k))′′,

i−2 (k) = (km(k))′ − 1, (1.9)

i−3 (k) = m(k) − m(2k)

and

iKdV (k) = 2i−3 (k) + i−2 (k). (1.10)

Otherwise, it is stable to square integrable perturbations in the vicinity
of the origin in the spectral plane.

Here we take matters further and derive modulational instabil-
ity indices for (1.1) and (1.2).

Theorem 1.3 (Modulational Instability Index for (1.1)). Under As-
sumption 1.1, a sufficiently small, 2π/k-periodic traveling wave
of (1.1) is spectrally unstable to long wavelength perturbations if

indBBM(k) :=
i1(k)i−2 (k)iBBM(k)

i−3 (k)
< 0, (1.11)

where i1, i−2 , i−3 are in (1.9) and

iBBM(k) = 2i−3 (k) + m(2k)i−2 (k). (1.12)

Otherwise, it is stable to square integrable perturbations in the vicinity
of the origin in the spectral plane.

Theorem 1.4 (Modulational Instability Index for (1.2)). Under As-
sumption 1.1, a sufficiently small, 2π/k-periodic traveling wave
of (1.2) is spectrally unstable to long wavelength perturbations if

indBnesq(k) :=
i1(k)i−2 (k)i+2 (k)iBnesq(k)

i−3 (k)i+3 (k)
< 0, (1.13)

where i1, i−2 , i−3 are in (1.9),

i+2 (k) = (km(k))′ + 1,

i+3 (k) = m(k) + m(2k)
(1.14)

and

iBnesq(k) = 2i−3 (k)i+3 (k) + m2(2k)i−2 (k)i+2 (k). (1.15)
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