
Physica D 325 (2016) 126–145

Contents lists available at ScienceDirect

Physica D

journal homepage: www.elsevier.com/locate/physd

Wavelet shrinkage of a noisy dynamical system with non-linear noise
impact
Matthieu Garcin a,b,∗, Dominique Guégan a

a Université Paris 1 Panthéon-Sorbonne, MSE - CES, 106 boulevard de l’hôpital, 75013 Paris, France
b Natixis Asset Management, 21 quai d’Austerlitz, 75013 Paris, France
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• Wavelet shrinkage of a noisy chaos.
• Nonlinear noise influence and nonequispaced sample: a new kind of signal processing.
• Noise described by alpha-stable random variables.
• Robustness of the threshold filters to leptokurtic noise.
• Application to simulated logistic and Lorenz chaos and to financial data.
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a b s t r a c t

By filtering wavelet coefficients, it is possible to construct a good estimate of a pure signal from noisy
data. Especially, for a simple linear noise influence, Donoho and Johnstone (1994) have already defined an
optimal filter design in the sense of aminimization of the errormadewhen estimating the pure signal.We
set here a different framework where the influence of the noise is non-linear. In particular, we propose
a method to filter the wavelet coefficients of a discrete dynamical system disrupted by a weak noise,
in order to construct good estimates of the pure signal, including Bayes’ estimate, minimax estimate,
oracular estimate or thresholding estimate. We present the example of a logistic and a Lorenz chaotic
dynamical system as well as an adaptation of our technique in order to show empirically the robustness
of the thresholding method in presence of leptokurtic noise. Moreover, we test both the hard and the
soft thresholding and also another kind of smoother thresholding which seems to have almost the same
reconstruction power as the hard thresholding. Finally, besides the tests on an estimated dataset, the
method is tested on financial data: oil prices and NOK/USD exchange rate.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Donoho and Johnstone (1994) have developed a theory of signal
denoising using wavelets [1]. Their optimal filtering method has
been used for many applications. However, for some signals, the
noise has a non-linear influence and therefore, the classical theory
ofwavelet-based denoising has to be adapted. This is the aim of the
present paper in the particular framework of dynamical systems.
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Dynamical systems are used to depict non-linearity by a de-
terministic way [3,4]. They differ from other kinds of non-linear
models relying on a stochastic description, like heteroskedastic
processes [5–7], jumpprocesses [8] or also long-memory processes
[9–14]. Dynamical systems are particularly relevant in some appli-
cations, like in video processing [15], in natural sciences [16] as
well as in finance [17–19].

We consider a dynamical system, defined in discrete time, xt .
Two successive states of that dynamical system are linked by an
evolution function z [19]:

∀t ∈ {1, . . . , T }, xt+1 = z(xt). (1)

However, some measurement noise may perturb the observation
of that dynamical system [20,19]. In that case, we do not observe
directly the state of the system xt , but rather a noisy observation ut ,
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Fig. 1. Time trajectory (on the left) and evolution function (on the right) of the logistic map of parameter 4: z : x → 4x(1 − x).

which consists in an alteration of the state xt by an additive random
variable εt :

∀t ∈ {1, . . . , T }, ut = xt + εt ,

where ε1, . . . , εT are independent identically distributed random
variables. Therefore, the observed evolution function is not z but
the function zε that links two successive noisy observations:

∀t ∈ {1, . . . , T }, ut+1 = zε(ut) = z(ut − εt)+ εt+1. (2)

If we observe N states of the noisy system, we can sort all the
observations and therefore we get a discretization of the state
space of the dynamical system: u1:N ≤ · · · ≤ uN:N , respectively
noted for simplicity u1 ≤ · · · ≤ uN . Hence, we have N discrete
observations, zε(u1), . . . , zε(uN), of the noisy dynamical system:

∀n ∈ {1, . . . ,N}, zε(un) = z(un − ε⋆n)+ εn, (3)

where ε1, . . . , εN , ε⋆1, . . . , ε
⋆
N are 2N independent identically

distributed random variables [21].1 That noisy evolution function,
zε , is a non-linear function of the noise.

To sum up the problem, we have sparse observations of a
noisy evolution function, whereas we are mostly interested in
the knowledge of the pure dynamical system. The aim of the
present paper is then to present a method to denoise such a noisy
signal (the function zε) and therefore to estimate the true or pure
evolution function z introduced in Eq. (1).

Trajectories of dynamical systems are often very erratic, like,
for instance, in Fig. 1, where we represent a logistic chaos.
That erratic nature of the pure trajectory makes the denoising
of many noisy trajectories very challenging, even though a few
methods have already been tested to denoise noisy trajectories
of dynamical systems using linear wavelet filtering [22] or other
smoothing techniques [23]. Instead, evolution functions are often
smoother than time trajectories and their denoising is therefore
more feasible. Fig. 1 attests the smoothness of the same logistic
chaos ifwe consider its evolution function in thephase space rather
than its time trajectory. Therefore, we do not intend to denoise
directly the trajectory of a dynamical system in the time domain
but in the phase space. Both problems are linked and if we estimate
accurately z then we get an estimate of the pure time trajectory.

1 We note ε1, . . . , εN , ε⋆1, . . . , ε
⋆
N the noise in Eq. (3). These variables are not

identically related to the ε1, . . . , εT appearing in Eq. (2). Aswell asun+1 is not zε(un),
z(un−ε⋆n) is not disrupted in Eq. (3) by a variable εn+1 but by another variable noted
εn .

We can use several methods to denoise zε: local methods
and singular value decomposition [24–26], maximum-likelihood-
based techniques [20,27], methods based on correlation observa-
tion [28], kernel-based non-parametric estimates [29] or methods
using radial basis functions [30,31]. For a review, we refer to [4,32].

We aremostly interested in thewavelet shrinkage, because this
technique of analysis of a signal into localized elements, which
is very popular for spatially inhomogeneous signals in which the
noise influence is linear, allows a good accuracy and a parsimo-
nious representation [33]. Some empirical papers have already
studied that method applied to dynamical systems [23,34,35]. The
big challenge – that we investigate in this paper – in such amethod
is the non-linear influence of the noise on the signal. Indeed, the
literature mainly deals with the denoising based on wavelets for
signals with linear noise influence, and in the present article we
adapt those classical methods to the specific case of signals with
non-linear noise influence.

The irregular observation grid is another specificity of our
framework. Indeed, as we are interested in the evolution function,
the step size between two consecutive observations in the phase
space is non-constant, whereas the time trajectory is discretized by
a regular observation grid. We can thenmake some remarks about
that specificity:

• The observation grid is not only irregular, it is also stochastic,
and then all the following developments are conditional to a set
of observations.

• Irregular grids make the computation of classical empirical
wavelet coefficients biased and time-consuming. On the one
hand, the slow computation is due to the fact that fast em-
pirical wavelet transform algorithms are designed for regular
observation grids. A solution has been proposed to avoid this
computational drawback. Indeed second-generation wavelets
allow fast empirical wavelet transform using what is known as
lifting [36–39]: the main difference with classical wavelets is
that wavelets are not built anymore by dilatations and transla-
tions of a unique mother wavelet. Second-generation wavelets
are particularly pertinent in multiresolution analysis and in the
definition of the nested subspaces representing the different
scales. Nevertheless in our framework we prefer to use first-
generation wavelets because multiresolution and fast compu-
tation are not our goals. On the other hand, there is a bias when
one erroneously uses in the non-equispaced design the classical
empirical wavelet coefficient formula,
N

n=1

zε(un)ψj,k(un),
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