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h i g h l i g h t s

• A two-dimensional ideal fluid inside a circular domain under the action of a prescribed stirring protocol.
• The motion of advected particles follows a Hamiltonian system.
• The vortex induces a singularity on the angular variable.
• An infinite number of periodic solutions are found.
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a b s t r a c t

By means of a generalized version of the Poincaré–Birkhoff theorem, we prove the existence and mul-
tiplicity of periodic solutions for a Hamiltonian system modeling the evolution of advected particles in
a two-dimensional ideal fluid inside a circular domain and under the action of a point vortex with pre-
scribed periodic trajectory.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction and main result

We consider the motion of a two-dimensional ideal fluid in a
circular domain of radius R > 0 subjected to the action of a mov-
ing point vortex whose position, denoted as z(t), is a prescribed
T -periodic function of time. This model plays an important role in
Fluid Mechanics as an idealized model of the stirring of a fluid in-
side a cylindrical tank by an agitator. A fundamental reference for
this problem is the seminal paper [1], where the concept of chaotic
advectionwas coined. Following the classical Lagrangian represen-
tation, the mathematical model under consideration is the planar
system

˙ζ =
Γ

2π i


|z(t)|2 − R2

(ζ − z(t))(ζ z(t) − R2)


, (1)
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where the complex variable ζ represents the evolution on the posi-
tion of a fluid particle induced by the so-called stirring protocol z(t).
System (1) is a T -periodically forced planar system with Hamilto-
nian structure, where the stream function

Ψ (t, ζ ) =
Γ

2π
ln

 ζ − z(t)
z(t)ζ − R2


plays the role of the Hamiltonian.

The main contribution of Aref in [1] was to show that the
flow may experience regular or chaotic regimes depending on the
particular stirring protocol. For instance, system (1) is integrable
if z(t) is constant or z(t) = z0 exp(iΩt) but it is chaotic if z(t) is
piecewise constant (blinking protocol in the related literature). A
naive way to measure the influence of the ideas presented in [1] is
to note the more than a thousand citations of this inspiring paper
to date. Aref’s blinking protocol is piecewise integrable and the
theory of linked twist maps permits a good analytical study of the
underlying dynamics (see for instance [2,3]). More recently, other
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strategies of stirring have been studied, for instance the figure-
eight or the epitrochoidal protocol [4], but only from a numerical
point of view. Our contribution in this paper is to prove that both
regular and chaotic regimes share a common dynamical feature,
namely the existence of an infinite number of periodic solutions
labeled by the number of revolutions around the vortex in the
course of a period.

To be precise, let us fix z : R → C a T -periodic function such
that |z(t)| < R for all t . For a periodic solution ζ of (1) with period
kT , the winding number of ζ is defined as

rotkT (ζ ) =
1

2π i

 kT

0

d(ζ (t) − z(t))
ζ (t) − z(t)

and provides the number of revolutions of ζ (t) around the vortex
point z(t) in the time interval [0, kT ].We proceed to state ourmain
result.

Theorem 1.1. Let z : R → C be a T-periodic function of class C1,
such that |z(t)| < R for all t. Then, for every integer k ≥ 1, system (1)
has infinitelymany kT-periodic solutions lying in the diskBR(0). More
precisely, for every integer k ≥ 1, there exists an integer j∗k such that,
for every integer j ≥ j∗k , system (1) has two kT-periodic solutions
ζ

(1)
k,j (t), ζ (2)

k,j (t) such that, for i = 1, 2,

∥ζ
(i)
k,j ∥∞ ≤ R and rotkT (ζ

(i)
k,j ) = j. (2)

Moreover, for every k ≥ 1, j ≥ j∗k and i = 1, 2,

lim
j→+∞

|ζ
(i)
k,j (t) − z(t)| = 0, uniformly in t ∈ [0, kT ]. (3)

In particular, for k = 1, we find that (1) has infinitely many
T -periodic solutions. For k > 1, we find subharmonic solutions
of order k (i.e., kT -periodic solutions which are not lT -periodic for
any l = 1, . . . , k − 1) provided that j and k are relatively prime
integers; we remark that in this case it is also possible to show
that ζ

(1)
k,j (t), ζ (2)

k,j (t) are not in the same periodicity class (namely,
ζ

(1)
k,j (·) ≢ ζ

(2)
k,j (· + lT ) for every integer l = 1, . . . , k − 1).

It is worth pointing out that the regularity condition on the stir-
ring protocol plays an important role. In fact, Theorem 1.1 is not
true for a discontinuous z(t) (e.g. the blinking protocol), because
condition (3) would imply unphysical discontinuous particle tra-
jectories. The existence and multiplicity of periodic solutions for
a general protocol, as well as their stability properties, remains
as an open problem. We will come back to this issue in the final
section.

The rest of the paper is divided in three section. In Section 2 the
Poincaré section is defined, whereas Section 3 contains the proof
of Theorem 1.1 by an application of a generalized version of the
Poincaré–Birkhoff Theorem. The paper is concluded by Section 4
with a discussion on the physical meaning of the presented results
and some other remarks.

2. Definition of the Poincaré section

For our purposes, it is convenient to write system (1) as

˙ζ =
Γ

2π i

 1
ζ − z(t)

−
1

ζ −
R2

|z(t)|2
z(t)

 . (4)

In this form, the first term on the right models the action of the
vortex whereas the second term corresponds to the wall influence

on the flow. Identifying C with R2 and setting ζ = (x, y), z(t) =

(a(t), b(t)), we can rewrite system (4) in real notation as

ẋ =
Γ

2π

−
y − b(t)

|ζ − z(t)|2
+

y −
R2

|z(t)|2
b(t)ζ −

R2
|z(t)|2

z(t)
2


ẏ =

Γ

2π

 x − a(t)
|ζ − z(t)|2

−

x −
R2

|z(t)|2
a(t)ζ −

R2
|z(t)|2

z(t)
2

 ,

ζ = (x, y) ∈ R2. (5)

Let BR ⊂ R2 be the closed disk centered at the origin with
radius R. First, we recall a well known property of system (5).

Lemma 2.1. Let ζ : J → R2 be a solution of (5), with J ⊂ R its
maximal interval of definition. If |ζ (t0)| ≤ R for some t0 ∈ J , then
|ζ (t)| ≤ R for every t ∈ J , that is to say, the disk BR is invariant for
the flow associated to (5).

Proof. Since BR = {(x, y) ∈ R2
| V (x, y) ≤ R2

} for V (x, y) =

x2 + y2, by the standard result of flow-invariant sets, it is enough
to prove that

⟨Z(t, x, y)|∇V (x, y)⟩ = 0, for every t ∈ [0, T ], x2 + y2 = R2,

where Z(t, x, y) denotes the vector field of the differential system
(5). With simple computations, we find indeed

⟨Z(t, x, y)|∇V (x, y)⟩ =
1
2


X(t, x, y)x + Y (t, x, y)y


=

Γ

π


b(t)x − a(t)y

 
ζ −

R2

|z(t)|2
z(t)

2 −
R2

|z(t)|2
|ζ − z(t)|2

|ζ − z(t)|2
ζ −

R2
|z(t)|2

z(t)
2


=

Γ

π


b(t)x − a(t)y

 

1 −

R2

|z(t)|2

 
|ζ |

2
−

R2

|z(t)|2
|z(t)|2


|ζ − z(t)|2

ζ −
R2

|z(t)|2
z(t)

2


= 0. �

From now on, we will study solutions to system (5) belonging
to the invariant disk BR; accordingly, the singularity of the vector
field at ζ =

R2

|z(t)|2
z(t) (for which |ζ | > R) will not play any role. On

the contrary, we will take advantage of the singularity at ζ = z(t).
To this aim, it is useful to introduce the change of variable

η = ζ − z(t)

and set η = (u, v), so that system (5) is transformed into

u̇ =
Γ

2π

−
v

|η|2
+

v + b(t)

1 −

R2

|z(t)|2


η + z(t)


1 −

R2
|z(t)|2

2
 − ȧ(t)

v̇ =
Γ

2π

 u
|η|2

−

u + a(t)

1 −

R2

|z(t)|2


η + z(t)


1 −

R2
|z(t)|2

2
 − ḃ(t),

η = (u, v) ∈ R2. (6)

In the following, given η0 ≠ 0, we will denote by η(·; η0) the
unique solution of (6) satisfying the initial condition η(0) = η0.

Lemma 2.2. There exists r > 0 such that, if 0 < |η0| ≤ r, then the
solution η(·; η0) exists on R and satisfies |η(t; η0) + z(t)| ≤ R, for
every t ∈ R.
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