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a b s t r a c t

We construct normal forms for Lorentzian metrics on Engel distributions under the as-
sumption that abnormal curves are timelike future directed Hamiltonian geodesics. Then
we indicate some cases in which the abnormal timelike future directed curve initiating at
the origin is geometrically optimal. We also give certain estimates for reachable sets from
a point.
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1. Introduction

1.1. Preliminaries

In the series of papers [1–3] we studied (germs of) contact sub-Lorentzian structures on R3. In turn, in the series [4–6]
some classes of non-contact sub-Lorentzian structures on R3 were studied (in all cases the underlying distribution is of
rank 2). The next reasonable step is to study sub-Lorentzian structures again supported by rank 2 distributions but on
Rn, n ≥ 4. In this paper we begin studies in this direction, namely we examine the simplest such case, i.e. one supported
by the so-called Engel distribution. Before giving precise definition we will first present basis notions and facts from the
sub-Lorentzian geometry that will be needed to state the results.

For all details and proofs the reader is referred to [7] (and to other papers by the author; see also [8,9]). LetM be a smooth
manifold, and let H be a smooth distribution onM of constant rank. For a point q ∈ M and an integer i let us define H i

q to be
the linear subspace in TqM generated by all vectors of the form [X1, [X2, . . . , [Xk−1, Xk] . . .]](q), where X1, . . . , Xk are smooth
(local) sections of H defined near q, and k ≤ i. We say that H is bracket generating if for every q ∈ M there exists a positive
integer i = i(q) such that H i

q = TqM . Now, by a sub-Lorentzian structure (or metric) onM wemean a pair (H, g)made up of a
smooth bracket generating distribution H of constant rank and a smooth Lorentzian metric on H . A triple (M,H, g) is called
a sub-Lorentzian manifold.

Up to the end of this subsection we fix a sub-Lorentzian manifold (M,H, g). A vector v ∈ Hq is called timelike if
g(v, v) < 0, is called nonspacelike if g(v, v) ≤ 0 and v ≠ 0, is null if g(v, v) = 0 and v ≠ 0, finally is spacelike if
g(v, v) > 0 or v = 0. By a time orientation of (H, g) we mean a continuous timelike vector field on M . Suppose that X is a
time orientation of (M,H, g). Then a nonspacelike v ∈ Hq is said to be future directed if g(v, X(q)) < 0, and is past directed
if g(v, X(q)) > 0. An absolutely continuous curve γ : [a, b] −→ M is called horizontal if γ̇ (t) ∈ Hγ (t) a.e. on [a, b]. A
horizontal curve is nonspacelike (resp. timelike, null, nonspacelike future directed etc.) if so is γ̇ (t) a.e.
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Below we will need a notion of Hamiltonian geodesics. Let H : T ∗M −→ R be the so-calledgeodesic (or metric)
Hamiltonian associated with our structure (H, g). A global definition of H is given for instance in [7]. Locally H looks
as follows. Take an orthonormal basis X0, . . . , Xk for H defined on an open set U ⊂ M , where X0 is timelike. Then the
restriction of H to T ∗U is given by H(q, p) = −

1
2 ⟨p, X0(q)⟩2 +

1
2

k
j=1


p, Xj(q)

2. Denote by
−→
H the Hamiltonian vector

field corresponding to the functionH . A horizontal curve is called a Hamiltonian geodesic if it can be represented in the form
γ (t) = π ◦ λ(t), where λ̇ =

−→
H and π : T ∗M −→ M is the canonical projection. λ(t) is called a Hamiltonian lift of γ (t). It

is immediate from the very definition that if γ : [a, b] −→ M is a Hamiltonian geodesic and γ̇ (t0) is a nonspacelike (resp.
timelike, null, nonspacelike future directed etc.) vector, then so is γ̇ (t) for every t ∈ [a, b].

Before going further, it seems sensible to clarify why we use the word ‘geodesic’. So, first of all, if γ : [a, b] −→ M is a
nonspacelike curve then we define its sub-Lorentzian length by formula

L(γ ) =

 b

a


−g(γ̇ (t), γ̇ (t))dt.

Next, for an open subset U ⊂ M and any pair of points q1, q2 ∈ U , denote by Ωnspc
q1,q2(U) the set of all nonspacelike future

directed curves contained in U and joining q1 to q2. Now we say that a nonspacelike future directed curve γ : [a, b] −→ U
is amaximizing U-geodesic or simply a U-maximizer if

L(γ ) = max

L(η) : η ∈ Ω

nspc
γ (a),γ (b)(U)


.

By a U-geodesic wemean a curve in U whose every sufficiently small subarc is a U-maximizer (such an approach follows the
ideas elaborated in the Lorentzian case — see e.g. [10,11] or [12]). It turns out [7] that for every nonspacelike Hamiltonian
geodesic γ : [a, b] −→ M and for every t ∈ (a, b) there exists a neighbourhood U of γ (t) such that U ∩γ is a U-maximizer.
Note that in the Lorentzian (or Riemannian) geometry every geodesic is Hamiltonian. It is known that in the sub-Lorentzian
(or sub-Riemannian) geometry there are maximizers (minimizers) that are not Hamiltonian geodesics — see e.g. [2] and
Remark 1.1 below for examples in the sub-Lorentzian case (and [13,14] for the sub-Riemannian situation).

Denote by Φt the (local) flow of the field
−→
H . For a fixed point q0 ∈ M let us define Dq0 to be the set of all λ ∈ T ∗

q0M
such that the curve t −→ Φt(λ) is defined on the whole interval [0, 1]. Dqo is an open subset in T ∗

q0M . Now we define the
exponential mapping with the pole at q0

expq0 : Dq0 −→ M, expq0(λ) = π ◦ Φ1(λ).

Using properties of Hamiltonian equations it is easy to see that the Hamiltonian geodesic with initial conditions (q0, λ)
can be written as γ (t) = expq0(tλ). It can also be observed that if γ (t) is a Hamiltonian geodesic with a Hamiltonian lift
λ(t) = Φt(λ) then, from the definition of the geodesic Hamiltonian (see [7] formore details), it follows that for any v ∈ Hγ (t)
we have

g(γ̇ (t), v) = ⟨Φt(λ), v⟩ . (1.1)

At the end let us recall the notion of abnormal curves (cf. e.g. [13]). So an absolutely continuous curve λ : [a, b] −→ T ∗M
is called an abnormal biextremal if λ([a, b]) ⊂ H⊥, λ never intersects the zero section, andmoreoverΩλ(t)(λ̇(t), ζ ) = 0 for
almost every t ∈ [a, b] and every ζ ∈ Tλ(t)H⊥; here H⊥ is the annihilator of H , andΩ denotes the restriction to H⊥ of the
standard symplectic form on T ∗M . A horizontal curve γ : [a, b] −→ M is said to be abnormal if there exists an abnormal
biextremal λ : [a, b] −→ T ∗M such that γ = π ◦ λ.

Throughout the paperwewill use the following abbreviations: ‘‘t.’’ for ‘‘timelike’’, ‘‘nspc.’’ for ‘‘nonspacelike’’, and ‘‘f.d.’’ for
‘‘future directed’’.Moreover, unless otherwise stated,we assumeall curves and vectors to behorizontal. Thus e.g. a t.f.d. curve
is a horizontal curve whose tangent is t.f.d. a.e.

1.2. Statement of the results

Let H be a rank 2 distribution of constant rank on a 4 -dimensional manifold M . We say that H is an Engel (or Engel
type) distribution if H2 is of constant rank 3, and H3 is of constant rank 4, i.e. H3

= TM . The remarkable property of Engel
distributions is the fact that they are topologically stable, see e.g. [15] (note that apart from Engel case, the only stable
distributions are rank 1 distributions, and also contact and pseudo-contact distributions). On the other hand, if one slightly
perturbs any given rank 2 distribution on a 4-manifold it becomes Engel on an open and dense subset. All this gives rise to
the importance of Engel distributions. But Engel distributions are important also because of another reason, namely they
appear in applications. For instance our flat case (see example below) serves as a model for a motion of a car with a single
trailer (cf. e.g. [16]).

Using for instance [13] onemakes sure that ifH is an Engel distribution onM then through each point q ∈ M there passes
exactly one unparameterized abnormal curve. Moreover the abnormal curves are all (at least locally) trajectories of a single
smooth vector field.

Let H be an Engel type distribution and let g be a Lorentzian metric on H . A couple (H, g) is called an Engel sub-
Lorentzian structure (or metric) if the abnormal curves for H are timelike. If moreover the abnormal curves are, possibly after
reparameterization, t.f.d. Hamiltonian geodesics then (H, g)will be called Engel sub-Lorentzian structure of Hamiltonian type.
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