
Physica D 320 (2016) 1–8

Contents lists available at ScienceDirect

Physica D

journal homepage: www.elsevier.com/locate/physd

Autoresonance versus localization in weakly coupled oscillators
Agnessa Kovaleva a,∗, Leonid I. Manevitch b

a Space Research Institute, Russian Academy of Sciences, 117997 Moscow, Russia
b Institute of Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia

h i g h l i g h t s

• An analysis of capture into resonance and escape from it in coupled oscillators under the action of a periodic force is provided.
• An effect of slow modulation of the natural and/or external frequency on the emergence of autoresonance is investigated.
• Explicit asymptotic solutions are derived.
• Numerical simulations prove a good agreement between the analytical and numerical (exact) results.
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a b s t r a c t

We study formation of autoresonance (AR) in a two-degree of freedom oscillator array including a
nonlinear (Duffing) oscillator (the actuator)weakly coupled to a linear attachment. Two classes of systems
are studied. In the first class of systems, a periodic force with constant (resonance) frequency is applied to
a nonlinear oscillator (actuator) with slowly time-decreasing stiffness. In the systems of the second class
a nonlinear time-invariant oscillator is subjected to an excitation with slowly increasing frequency. In
both cases, the attached linear oscillator and linear coupling are time-invariant, and the system is initially
engaged in resonance. This paper demonstrates that in the systems of the first type AR in the nonlinear
actuator entails oscillations with growing amplitudes in the linear attachment while in the system of the
second type energy transfer from the nonlinear actuator is insufficient to excite high-energy oscillations of
the attachment. It is also shown that a slow change of stiffness may enhance the response of the actuator
and make it sufficient to support oscillations with growing energy in the attachment even beyond the
linear resonance. Explicit asymptotic approximations of the solutions are obtained. Close proximity of
the derived approximations to exact (numerical) results is demonstrated.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

It is well known that high-energy resonant oscillations in a
linear time-invariant oscillator are generated by an external force
whose constant frequency matches the frequency of the oscillator.
A change of the forcing and/or oscillator frequency results in escape
from resonance. On the contrary, the frequency of a nonlinear
oscillator changes as the amplitude changes, and the oscillator
may remain in resonance with its drive if the driving frequency
and/or other parameters vary slowly in time to be consistent with
the slowly changing frequency of the oscillator. The ability of a
nonlinear oscillator to stay captured into resonance due to variance
of its structural or excitation parameters is termed autoresonance
(AR), or nonstationary resonance.
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An idea of ‘‘resonance under the action of a force produced
by the system’s itself’’ was first suggested by Andronov, Vitt and
Khaikin (see [1] for references and details). It was shown [1,2] that
the realization of the sought resonance regime in an autonomous
system employs feedback control and does not need an additional
source of energy. However, feedbacks ensuring stable high-energy
oscillations require careful diagnostics of nonlinear states andmay
become problematic in multi-degree of freedom systems. Proper
modulation of structural and/or excitation parameters allows one
to excite AR in a systemwithout complicated and costly feedbacks.

AR was first used in applications to particle accelerations
[3–5] and planetary dynamics [6–8] and reported as ‘‘phase
stability principle’’. Building on that works, a large number of
theoretical investigations, experimental results and applications of
AR for a broad range of systems have been reported in literature,
see, for instance, in [9–16] and references therein. In most of
that studies AR in the forced oscillator was considered as an
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effective tool for exciting a required high-energy regime in the
entire system. This paper demonstrates that this conclusion is not
common, because capture into resonance of a multi-dimensional
oscillator is a much more complicated phenomenon than a similar
effect for a single oscillator. As an example, an array consisting
of a linear oscillator weakly coupled to a nonlinear (Duffing)
actuator driven by an external force is considered in this work. This
oscillator cell represents, for example, a model of a micro-energy
generator [17]. This model admits a straightforward asymptotic
analysis, which allows one to establish the conditions of the
occurrence of AR in the entire system and reveal the physical
nature of the transient processes.

Two types of excitation are considered in this work: first, the
actuator (the Duffing oscillator) with slowly time-decreasing stiff-
ness is excited by a periodic force with constant frequency; sec-
ondly, the time-invariant actuator is driven by a forcewith a slowly
increasing frequency. In both cases, the attached linear oscillator
and linear coupling remains time-invariant, and the system is ini-
tially captured into resonance. The purpose of the present paper
is to analyze capture into resonance and escape from it for both
types of excitation. Note that the present work does not analyze
the global behavior of the system in the phase space.We focus on a
particular problem of passage through resonance of an array start-
ing at rest. The last assumption is important, because zero initial
conditions correspond to motion with maximum possible energy
transfer from a source of energy to a receiver [18,19].

Since multidimensional nonlinear nonstationary systems sel-
dom yield explicit analytical solutions needed for modeling and
understanding the transition phenomena, the multiple scales for-
malism [20] is invoked to derive asymptotic solutions for both
types of systems.

It was shown in earlier work [21] that a slow increase of the
forcing frequency or an equivalent decrease of the linear stiffness
plays a similar role in the emergence and stability of AR in a single
Duffing oscillator. However, this analogy becomes invalid for the
system under consideration. As shown in Section 2, periodic forc-
ingwith constant (resonant) frequencybeing applied to thenonlin-
ear (Duffing) actuator with slowly-decreasing linear stiffness gives
rises to oscillations with growing energy in both oscillators. How-
ever, Section 3 proves that if the forcing frequency slowly increases
but the actuator is time-invariant, the most part of energy remains
localized on the excited oscillator and a portion of energy trans-
ferred to the linear oscillator is insufficient to provide growing os-
cillations in the attachment.

It seems obvious that different dynamical behavior of the two
types of system is closely related to their resonance properties. If
the system is excited by periodic forcing with constant frequency,
both oscillators are captured into resonance: the time-variant
nonlinear oscillator remains captured into resonance due to an
increase of the amplitude compensating the change of its linear
stiffness, while the partial frequency of the linear oscillator is
always close to the excitation frequency. If the forcing frequency
slowly increases, AR in the time-invariant nonlinear oscillator is
still sustained by the growth of the amplitude, while the linear
oscillator escapes from resonance. It is important to note that
escape from resonance does not prevent further increase of energy
of the linear oscillator. The linear oscillator is actually driven by
the coupling response with gradually increasing amplitude and
thus, the dynamics of the oscillator depends on the relationship
between the growth of incoming energy and the loss of energy
due to escape from resonance. As shown in Section 3, an additional
slow modulation of stiffness can enhance the response of the
nonlinear oscillator and make it sufficient to produce oscillations
with permanently increasing energy in the linear oscillator even
beyond the domain of resonance.

Escape from resonance and formation of bounded oscillations
in the entire system is briefly discussed in Section 4. Section 5
contains a brief summary and conclusions.

2. AR in a system subjected to a periodic excitation

2.1. Main equations

In this section we consider a 2DOF model consisting of a lin-
ear oscillator with constant parameters weakly coupled to a time-
dependent nonlinear (Duffing) oscillator subjected to a periodic
excitation with constant frequency. The equations of motion are
given by:

m0
d2u0

dt2
+ C(t)u0 + γ u3

0 + c10(u0 − u1) = A sinωt,

m1
d2u1

dt2
+ c1u1 + c10(u1 − u0) = 0,

(1)

where u0 and u1 denote absolute displacements of the nonlinear
and linear oscillators, respectively;m0 andm1 are their masses; c1,
stiffness of the linear oscillator; c10, the linear coupling coefficient;
γ , the coefficient of cubic nonlinearity; C(t) = c0 − (k1 + k2t),
where k1,2 > 0 are detuning parameters; A and ω denote the
amplitude and the frequency of the periodic force applied to the
nonlinear oscillator (the actuator); the second (linear) oscillator is
unforced. The system is initially at rest, i.e., ur = 0, vr =

dur
dt = 0

at t = 0 (r = 0, 1). We recall that zero initial conditions define the
Limiting Phase Trajectories (LPTs) corresponding to motion with
maximum possible energy transfer from a source of energy to a re-
ceiver [18,19].

Assuming weak coupling, we define the small parameter ε of
the system by relation ε = c10/(2c1) ≪ 1. Then, considering weak
nonlinearity and taking into account resonance properties of the
system, we introduce the parameters

c0/m0 = c1/m1 = ω2, A/c0 = 2εF ,
k1/c0 = 2εs, γ /c0 = 8εα,

k2/c0 = 2ε2s2βω, c10/cr = 2ελr , r = 0, 1;
λ1 = 1.

(2)

Rescaling of (1) according to (2) yield the following equations:

d2u0

dτ 20
+ (1 − 2εsζ0(τ ))u0 + 2ελ0(u0 − u1)

+ 8εαu3
0 = 2εF sin τ0,

d2u1

dτ 20
+ u1 + 2ελ1(u1 − u0) = 0,

(3)

where τ0 = ωt and τ = εsτ0 denote the dimensionless fast and
slow time scales, respectively; ζ0(τ ) = 1 + βτ . Eqs. (3) can be
asymptotically analyzed with the help of the multiple time scale
method [20]. To this end,wedefine the complex amplitudesΨr ,Ψ

∗
r

and additional rescaled parameters by formulas:

Ψr = Λ−1(vr + iur)e−iτ0 , Ψ ∗

r = Λ−1(vr − iur)eiτ0 ,

Λ = (s/3α)1/2, f = F/sΛ,

µr = λr/s; r = 0, 1; µ1 = s−1.

(4)

It follows from (3), (4) that energy Er of each of the oscillators (3)
can be asymptotically evaluated as Er = 1/2|Ψr |

2
+ ε . . . .

Substituting (4) into (3), we obtain the following (still exact)
equations in the standard form for the complex amplitudesΨ0,Ψ1:

dΨ0

dτ0
= −iεs[(ζ0(τ )− |Ψ0|

2)Ψ0 − µ0(Ψ0 − Ψ1)+ f + G0],

dΨ1

dτ0
= iεs[µ1(Ψ1 − Ψ0)+ G1],

(5)

with initial conditions Ψ0(0) = Ψ1(0) = 0. By construction,
the functions G0 and G1 include the sums of fast harmonics with
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