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h i g h l i g h t s

• Comparisons between H/K lists for equations, oscillators, and systems are made.
• Comparisons of phase-shift patterns are made.
• The H/K theorem for periodic solutions of coupled oscillators is valid.
• The H/K lists for equivariant and admissible maps are not equal for coupled equations.
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a b s t r a c t

In this paperwe discusswhat is known about the classification of symmetry groups and patterns of phase-
shift synchrony for periodic solutions of coupled cell networks. Specifically, we compare the lists of spatial
and spatiotemporal symmetries of periodic solutions of admissible vector fields to those of equivariant
vector fields in the three cases of Rn (coupled equations), Tn (coupled oscillators), and (Rk)n where
k ≥ 2 (coupled systems). To do this we use the H/K Theorem of Buono and Golubitsky (2001) applied
to coupled equations and coupled systems and prove the H/K theorem in the case of coupled oscillators.
Josić and Török (2006) prove that the H/K lists for equivariant vector fields and admissible vector fields
are the same for transitive coupled systems.We show that the corresponding theorem is false for coupled
equations. We also prove that the pairs of subgroups H ⊃ K for coupled equations are contained in the
pairs for coupled oscillators which are contained in the pairs for coupled systems. Finally, we prove that
patterns of rigid phase-shift synchrony for coupled equations are contained in those of coupled oscillators
and those of coupled systems.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Many biological phenomena, such as respiration [1,2], loco-
motion [3–7], or rivalry [8] are characterized by robust rhythmic
patterns that exhibit particular phase relationships or phase-shifts.
The neuronal networks responsible for these behaviors can be
represented as coupled systems of differential equations that ex-
hibit periodic behavior corresponding to these phase-shift pat-
terns. These phase relationships appear to occur robustly in nature;
hence, it is reasonable to utilize models in which the phase-shifts
are rigid, that is, they are preserved under small perturbations of
the corresponding network of differential equations.
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It is well known that rigid phase-shifts in networks of
differential equations may be caused by the symmetries of the
underlying network. Stewart et al. [9–11] developed a framework
for studying coupled systems of differential equations that
associates to each directed graph a collection of admissible vector
fields. These authors and others have then studied properties of
solutions and of bifurcations in admissible systems.

The fact that rigid phase-shifts are also informed by the state
spaces of the network nodes is frequently overlooked. Classically,
modelers often use state spaces for individual nodes that are either
one-dimensional R (smoothed out integrate and fire systems),
circles T (oscillators), or multidimensional Rk where k ≥ 2
(Hodgkin–Huxley neurons).We call these cases: coupled equations,
coupled oscillators, and coupled systems. This paper studies the
similarities and the differences between patterns of phase-shift
synchrony forced by network symmetry in these three contexts,
both for the class of admissible vector fields and for the less
restrictive class of equivariant vector fields.
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(a) Two identical node, identical coupling
network with σ = (1 2) symmetry.

(b) Four-cell network with
σ = (1 2)(3 4) symmetry.

Fig. 1. Examples of networks with Z2 symmetry.

Examples of rigid phase-shifts for periodic solutions

Before presenting our results we recall some terminology.
Specifically, we discuss rigid phase-shifts, patterns of phase-shift
synchrony, and their relationship to symmetry. Suppose that a
network has n nodes and state variables (x1, . . . , xn).

Definition 1.1. A T -periodic solution X(t) = (x1(t), . . . , xn(t)) of
an admissible system has a phase-shift θij if there are two nodes i
and j such that

xj(t) = xi(t + θijT ).

This phase-shift is rigid if any perturbed admissible system has a
perturbed T̃ -periodic solution X̃(t) = (x̃1(t), . . . , x̃n(t)) such that

x̃j(t) = x̃i(t + θijT̃ )

with the same phase-shift.

To illustrate different rigid phase-shifts, consider the networks
shown in Fig. 1. The admissible systems corresponding to Fig. 1(a)
have the form

ẋ1 = f (x1, x2)
ẋ2 = f (x2, x1)

(1.1)

and the admissible systems corresponding to Fig. 1(b) have the
form

ẋ1 = h(x1, x3, x4)
ẋ2 = h(x2, x3, x4)
ẋ3 = g(x3, x1)
ẋ4 = g(x4, x2)

(1.2)

where x1, x2 ∈ P; x3, x4 ∈ Q and P and Q are phase spaces of indi-
vidual nodes. The overline indicates that h(a, b, c) = h(a, c, b).

As is well known, there are stable anti-phase periodic solutions
of coupled systems and coupled oscillators for (1.1) having the
form

x2(t) = x1


t +

1
2
T


,

(found by Hopf bifurcation), but it is less often discussed that
such solutions cannot exist for coupled equations. Similarly, there
are stable periodic solutions of coupled systems and of coupled
oscillators for (1.2) having the form

x2(t) = x1


t +

1
2
T


x4(t) = x3


t +

1
2
T


,

Fig. 2. Z2-symmetric, three-cell quotient network of the network in Fig. 1(b).

but this solution does not exist for coupled equations. Each of these
solution types is generated by the σ symmetry of their associated
networks (see Fig. 1).

The second network illustrates the subtle fact that a pattern of
phase-shift synchrony can be forced by a symmetry on a quotient
network, rather than by a symmetry on the network itself. See
[12–14]. Specifically, (1.2) can also have a periodic solution of the
form

x2(t) = x1(t) x4(t) = x3


t +

1
2
T


(1.3)

that is not generated by a network symmetry of Fig. 1(b). Note that
∆ = {x1 = x2} is a flow-invariant subspace for every admissible
vector field in (1.2) and the equations for the admissible vector
fields restricted to ∆ have the form

ẋ1 = h(x1, x3, x4)
ẋ3 = g(x3, x1)
ẋ4 = g(x4, x1).

(1.4)

These equations correspond to the quotient network given in Fig. 2
and this quotient network has a symmetry τ = (3 4). It is the
symmetry τ on the quotient network that generates the solution
type (1.3). Specifically, stable solutionswhere x3(t) and x4(t) are in
anti-phase can be found by Hopf bifurcation for coupled systems
and numerically for coupled oscillators. In these solutions x1(t)
oscillates at twice the frequency of x3(t). It follows that in network
1(b), x2(t) = x1(t +

1
2T ) = x1(t).

Patterns of phase-shift synchrony

In a series of papers, Stewart and Parker [15,16] and Golubit-
sky, Romano, and Wang [17,18] proved that in path connected
networks of either coupled equations or coupled systems, rigid
phase-shifts always result from symmetry. However, that symme-
try may be a symmetry of a quotient network, rather than a net-
work symmetry.

More precisely, we define:

Definition 1.2. A pattern of phase-shift synchrony is a subset of
pairs of nodes i and j and phase-shifts 0 ≤ θij < 1. A T -periodic so-
lution x(t) = (x1(t), . . . , xn(t)) exhibits this pattern of synchrony if

xj(t) = xi(t + θijT )

for all designated pairs i, j and the θij are rigid.

These four papers [15–18] prove the following: Suppose that a
periodic solution X(t) exhibits a pattern of phase-shift synchrony.
Then the polydiagonal defined by

△ = {X = (x1, . . . , xn) : xi = xj when θij = 0}

is flow-invariant. Moreover, there is a cyclic symmetry τ on the
quotient network corresponding to △ that generates all of the
nonzero θij in the pattern of phase-shift synchrony.

Symmetry groups of periodic solutions for equivariant systems

A symmetry of a system of differential equations

Ẋ = F(X) (1.5)
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