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HIGHLIGHTS

We examine the skill of the diffusion forecast model in predicting turbulent modes.

A novel Bayesian filtering method is introduced to initialize the forecast given noisy data.
The diffusion forecast is competitive with the perfect model given the same set of noisy data.
A test on geophysical turbulence indicates that the long-term forecasts are unbiased.
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In this paper, we apply a recently developed nonparametric modeling approach, the “diffusion forecast”,
to predict the time-evolution of Fourier modes of turbulent dynamical systems. While the diffusion
forecasting method assumes the availability of a noise-free training data set observing the full state
space of the dynamics, in real applications we often have only partial observations which are corrupted
by noise. To alleviate these practical issues, following the theory of embedology, the diffusion model is
built using the delay-embedding coordinates of the data. We show that this delay embedding biases the
geometry of the data in a way which extracts the most stable component of the dynamics and reduces the
influence of independent additive observation noise. The resulting diffusion forecast model approximates
the semigroup solutions of the generator of the underlying dynamics in the limit of large data and when
the observation noise vanishes. As in any standard forecasting problem, the forecasting skill depends
crucially on the accuracy of the initial conditions. We introduce a novel Bayesian method for filtering
the discrete-time noisy observations which works with the diffusion forecast to determine the forecast
initial densities.

Numerically, we compare this nonparametric approach with standard stochastic parametric models
on awide-range of well-studied turbulent modes, including the Lorenz-96 model in weakly chaotic to fully
turbulent regimes and the barotropic modes of a quasi-geostrophic model with baroclinic instabilities. We
show that when the only available data is the low-dimensional set of noisy modes that are being modeled,
the diffusion forecast is indeed competitive to the perfect model.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

of the statistics. In order to predict a few lower-order statistics
of some resolved variables, common closure approaches were

A long-standing issue in modeling turbulent dynamics is the
so-called turbulent closure problem (see e.g. [1]) where the
goal is to find a set of effective equations to represent low-
order statistics of the coarse-grained variables of interest. The
main difficulty of this problem is largely due to the infinite
dimensionality and nontrivial coupling of the governing equations
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developed using physical insights to choose a parametric ansatz
to represent the feedback from the unresolved scales (see e.g., [2]
for various closure approximations for predicting passive scalar
turbulence and [3-6] for various stochastic modeling approaches
for predicting geophysical turbulence).

Despite these successes, the parametric modeling approaches
have practical issues due to model error when the necessary
physical insights are not known. If the parametric model (or
ansatz) is not chosen appropriately, one can end up with a model
with poor predictive skills (or even with solutions which diverge
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catastrophically) even when the parameters can be obtained by a
standard regression fitting procedure [7]. Moreover, even when an
appropriate parametric form is chosen, specifying the parameters
from noisy observations of the physical variables can be nontrivial
since the parameters are typically not directly observed. Indeed, it
was shown that an appropriate parameterization scheme is crucial
for accurate filtering and equilibrium statistical prediction even
when the parametric forms are appropriately chosen [8].

Recently, a nonparametric modeling approach, called the
diffusion forecast, for predicting the evolution of the probability
density of low-dimensional dynamical system was introduced
in [9]. The approach of [9] can be intuitively viewed as extending
the standard nonparametric statistical models (such as kernel
density estimates) which are used to estimate time-independent
densities [ 10]. The key idea behind the diffusion forecast is to use a
basis of smooth functions to represent probability densities, so that
the forecast model becomes a linear map in this basis. Numerically,
this linear map is estimated by exploiting a rigorous connection
between the discrete time shift map and semi-group solution
associated to the backward Kolmogorov equation. In [9], it was
shown that the resulting model estimates the semigroup solutions
of the generator of the underlying dynamics in the limit of large
data. Moreover, the smooth basis is defined on the training data
set, using the diffusion maps algorithm [11,12], which means that
the data requirements only depend on the intrinsic dimensionality
of the dynamics.

In this paper, we test this nonparametric modeling approach
as a method of forecasting noisy observations of Fourier modes
from a selection of well-studied high-dimensional dynamical
systems in various turbulent regimes. A novel aspect of this
paper is that we consider building a forecasting model given a
noisy training data set consisting of partial observations of the
dynamics, as is common in practical applications, in contrast to
the work in [9] which used noiseless full observations to train
the diffusion forecasting model. A key ingredient for solving initial
value problems in any forecasting problem is accurate initial
conditions. While initial conditions were assumed to be given
in [9], in this paper, we introduce a novel Bayesian filtering
method to iteratively assimilate each observation and find the
initial probability densities given all of the past noisy observations
up to the corresponding initial time.

We should note that the diffusion forecasting method [9] could
be naively applied to signals corrupted by observation noise,
however the resulting nonparametric model would implicitly
include the observation noise in the model, which would limit
the forecast skill compared to treating the noise as a separate
process. Treating the noise as a separate process requires first
learning the ‘correct’ model from the noisy training data set,
and then generating ‘clean’ initial conditions for forecasting from
the noisy observations. In [13-15] it was shown that applying
diffusion maps to the delay-embedded data reduces the influence
of the noise on the diffusion maps basis. Building upon the work
in [9], we apply the theory of [13] to show that building the
nonparametric model using the delay-embedded data biases the
geometry of the data in a way which extracts the most predictable
component of the dynamics. We extend the theory of [13] by
giving a rigorous justification for the reduction of the influence of
independent additive observation noise on the resulting diffusion
forecast model.

One interesting question which we address here is whether
it is possible to build a skillful nonparametric forecasting
model for a turbulent mode given only a small amount of
noisy training data, when the true dynamics are solutions of
a high-dimensional dynamical system with chaotic behavior.
This question arises because the nonparametric model has a
practical limitation in terms of modeling dynamics with high-
dimensional attractors, namely: it will require an immense

amount of data to unwind the attractors since the required data
increases exponentially as a function of the dimension of the
attractor. Moreover, even given a sufficiently large data set, the
required computational power would be a limiting factor since
the diffusion maps algorithm requires storing and computing
eigenvectors of a sparse N x N matrix, where N is the number
of data points. Constrained by a small data set, the curse-of-
dimensionality implies that we cannot unwind the full high-
dimensional attractor. We attempt to circumvent the curse-of-
dimensionality by decomposing the data into Fourier modes in
the hope that delay reconstruction of each mode projects onto
a different component of the dynamics. We do not claim that
the Fourier decomposition can completely resolve this issue but
we will numerically demonstrate that the Fourier decomposition
will map an isotropic turbulent field in the spatial domain (which
implies that each spatial component is as predictable as any other
spatial component) to a coordinate system in which some modes
are more predictable than others. Of course, the standard theory
of embedology [16] suggests that the delay-embedding of a single
Fourier mode would reconstruct the entire high-dimensional
attractor, which would again be inaccessible to our nonparametric
model due to the curse-of-dimensionality. This would suggest
that nothing could be gained by building separate models based
on delay-embedding of each mode. However, the full attractors
reconstructed from each mode are only equivalent in a topological
sense, and the geometries of these reconstructed attractors
are dramatically different. The biased geometry influences the
nonparametric model of [9] through the use of the diffusion
map algorithm which is known to preserve the geometry
which the data inherits from the embedding space [11,13].
The diffusion maps algorithm preserves the biased geometry of
the delay embedding as was shown in [13]; and we will see that
this biased geometry projects the full dynamical system onto the
most stable components of the dynamics in the direction of the
chosen observations. When we apply the nonparametric model
of [9] using the basis arising from this biased geometry, we find
improved forecasting skill and robustness to observation noise.
The remainder of this paper is organized as follows. In Section 2,
we introduce the problems under consideration and establish the
necessary background, including a brief overview of the nonpara-
metric modeling approach introduced in [9] as well as a discussion
on how the theory of [13] is applied to mitigate the effect of noise
on the model. We conclude Section 2 by introducing the iterative
Bayesian filter which we use to generate initial conditions for fore-
casting with the nonparametric model. In Section 3, we numeri-
cally compare predicting Fourier modes of the Lorenz-96 model in
various chaotic regimes using the nonparametric model with the
persistence model, perfect model, and various parametric models,
including the autoregressive models of order-1(MSM [17]). In Sec-
tion 4, we numerically compare the nonparametric model with a
stochastic model with additive and multiplicative noises (SPEKF
model [18,19]) in predicting the barotropic modes of a geostrophic
turbulence. We close this paper with a short summary in Section 5.

2. Nonparametric diffusion modeling

Let u(x, t) € R® be solutions of an ergodic system of nonlinear
PDEs,

M aw (1)
= = A,

ot

where A denotes nonlinear differential operators, for smooth
initial conditions u(x, 0) and periodic boundary conditions on a
non-dimensionalized periodic domain x € [0, 27]". To simplify
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