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a b s t r a c t

In this paper we give a short geometric proof of a generalization of a well-known result
about reduction of codimension for submanifolds of Riemannian symmetric spaces.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The goal of this paper is to give a short geometric proof of the following generalization of the reduction of codimension
theorem for submanifolds of space forms [1, page 339]:

Theorem 1. Let M be a submanifold of a symmetric space S and let ν(M) be its normal bundle. Assume that there exists a ∇
⊥-

parallel subbundle V ⊂ ν(M) containing the first normal space, i.e. N1
⊂ Vwhere N1

= α(TM × TM). If TM ⊕V is invariant by
the curvature tensor of S then there exists a totally geodesic submanifold of S of dimension equal to rank(TM⊕V) containing M.

As a corollary of this result one can obtain several well-known special cases [2–8].
The hypothesis about the curvature invariance of TM ⊕ V is redundant if S is a space form. We will give an example

showing that such condition cannot be omitted in general, see Section 4.
Our proof of the above theorem was mainly inspired by the proof, due to C. Olmos, of the existence theorem of a totally

geodesic submanifold with prescribed tangent space usually attributed to E. Cartan, see [9, Theorem 8.3.1, page 231]. Olmos’
proof is based in Lemma 8.3.2 in [9, page 232]. We will need to use a slightly different version of this lemma which involves
parallel translation along piece-wise smooth curves instead of smooth curves. We include it in an Appendix, with a sketch
of its proof, for the sake of completeness.
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Theorem 1 does not hold for submanifolds of locally symmetric spaces. The problem is that under the same hypothesis,
the ‘‘totally geodesic submanifold’’ containing M may intersect itself, see example in Section 4. One can prove a slightly
different version of this theorem for locally symmetric spaces by either assuming that the submanifold M is embedded or
allowing totally geodesic immersions (not necessarily 1–1) instead of totally geodesic submanifolds.

Finally, we want to point out that Theorem 1 can be obtained, besides our proof, by following two other different
approaches. The first one makes use of the Grassmann bundle theory and the integration theory of differentiable
distributions, see [10, Prop. 3, page 90]. The second one is based on a generalization of the classical theorem of existence
and uniqueness of isometric immersions into space forms, see [11].

2. Basic definitions

We will say that a Riemannian manifold M is a submanifold of a Riemannian manifold S if there is a 1–1 isometric
immersion f : M → S. In order to simplify the notation, we shall assume that M is a subset of S, eventually endowed
with a different topology, and f is the inclusion map. If in addition M has the induced topology from S we say that M is an
embedded submanifold.

We identify the tangent space to M at a point p with a subspace of TpS and consider the orthogonal splitting TpS =

TpM ⊕ νpM . Here νpM is the normal space and ν(M) will denote the normal bundle ofM .
We denote by ∇ the Levi-Civita connection of S and by ∇ and ∇

⊥ the Levi-Civita and the normal connections of M
respectively. Let α and A be the second fundamental form and shape operator of M respectively. They are defined taking
tangent and normal components by the Gauss and Codazzi formulas

∇XY = ∇XY + α(X, Y ), ∇Xξ = −AξX + ∇
⊥

X ξ (1)

and related by ⟨α(X, Y ), ξ⟩ =

AξX, Y


, for any tangent vector fields X and Y to M and any normal vector field ξ .

3. Proof of Theorem 1

First notice that it suffices to prove the theorem locally around each point. Namely, to show the existence of a totally
geodesic submanifold Np of S containing a neighborhood U of p inM whose tangent space is TqNp = TqM ⊕ Vq for all q ∈ U .
Indeed, the global result follows since a complete totally geodesic submanifold of a symmetric space S with a prescribed
tangent space is unique as a global object [12, Lemma 2, page 235].

So we may assume that M is small enough so that the normal exponential map exp⊥
: V0 → S is an immersion from a

small neighborhood V0 of the zero section of V.
Set N = exp⊥(V0). Since M is the image of the zero section of V we get that M is a submanifold of N . Now we are going

to prove that N is a totally geodesic submanifold by a similar argument as in the proof of Theorem 8.3.1 in [9, page 231]. It
will suffice to prove that the parallel transport in S along any curve in N preserves the tangent bundle TN . To do this we will
fix a point p ∈ M and we will show the following two properties:

(i) for any point q in N , there is a curve γ joining pwith q such that the parallel transport along γ in S of TpN is Tγ (t)N;
(ii) the tangent space TpN is preserved by parallel transport in S along any loop in N based at p.

In order to prove (i), we will start showing that TN is parallel with respect to the connection ∇ of S in directions tangent
toM .

Since TN|M = TM ⊕ V, a section X of TN|M splits as X = X1 + X2, with X1 ∈ TM and X2 ∈ V. So if v ∈ TpM , then

∇vX = ∇vX1 + α(v, X1) + ∇
⊥

v X2 − AX2v.

This shows that ∇vX belongs to TN since α(v, X1) ∈ N1
⊂ V and V is parallel with respect to the normal connection ofM .

The second step is to prove that TN moves parallel along any normal geodesic γ (t) = expp(tξp) for p ∈ M and ξp ∈ V0.
Observe that the tangent spaces to N along γ are generated by the Jacobi fields J(t) along γ (t) with initial conditions
J(0) ∈ Tγ (0)M and J ′(0) ∈ V.

Denote by Wt the parallel transport of TpN along γ from γ (0) to γ (t).
Let J(t) be any Jacobi vector field along γ with J(0) ∈ Tγ (0)M and J ′(0) ∈ Vγ (0). Since TM ⊕ V is invariant under the

curvature tensor of the symmetric space S one gets that J(t) ∈ Wt for every t . Indeed, Wt is curvature invariant and so the
Jacobi equation can be solved in Wt . This shows that Tγ (t)N ⊂ Wt , hence Wt = Tγ (t)N , since both are linear spaces of the
same dimension.

Now, if q is any point in N , there exists a point q0 in M and a normal vector ξq0 ∈ V0 such that q = exp⊥(ξq0). From the
above discussion, any curve in M connecting p to q0 followed by a normal geodesic from q0 in the direction of ξ0 gives one
curve joining p with q satisfying (i).

Now we prove (ii) by using Lemma A.1 in Appendix (cf. [9, Lemma 8.3.2, page 232]). Let c(s) be any loop in N based at
p ∈ M . There exists a loop ĉ(s) in M based at p and a normal vector field ξ(s) ∈ Vĉ(s) along ĉ such that c(s) = exp⊥(ξ(s)).
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