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h i g h l i g h t s

• Stochastic stability of invariant measures is investigated for gradient systems.
• Noise vanishing limits of Gibbs measures are discussed.
• Examples of non-convergence or instability are given for both additive and multiplicative noise perturbations.
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a b s t r a c t

Stochastic stability of a compact invariant set of a finite dimensional, dissipative system is studied in our
recent work ‘‘Concentration and limit behaviors of stationary measures’’ (Huang et al., 2015) for general
white noise perturbations. In particular, it is shown under some Lyapunov conditions that the global
attractor of the systems is always stable under general noise perturbations and any strong local attractor
in it can be stabilized by a particular family of noise perturbations. Nevertheless, not much is known
about the stochastic stability of an invariant measure in such a system. In this paper, we will study the
issue of stochastic stability of invariantmeasureswith respect to a finite dimensional, dissipative gradient
system with potential function f . As we will show, a special property of such a system is that it is the set
of equilibria which is stable under general noise perturbations and the set Sf of global minimal points
of f which is stable under additive noise perturbations. For stochastic stability of invariant measures in
such a system, we will characterize two cases of f , one corresponding to the case of finite Sf and the
other one corresponding to the case when Sf is of positive Lebesgue measure, such that either some
combined Dirac measures or the normalized Lebesgue measure on Sf is stable under additive noise
perturbations. However, we will show by constructing an example that such measure stability can fail
even in the simplest situation, i.e., in 1-dimension there exists a potential function f such that Sf consists
of merely two points but no invariant measure of the corresponding gradient system is stable under
additive noise perturbations. Crucial roles played by multiplicative and additive noise perturbations to
the measure stability of a gradient system will also be discussed. In particular, the nature of instabilities
of the normalized Lebesgue measure on Sf under multiplicative noise perturbations will be exhibited by
an example.
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1. Introduction

Consider a system of ordinary differential equations

ẋ = V (x), x ∈ Rn, (1.1)

where V = (V i) ∈ C(Rn, Rn). Adding multiplicative including
additive white noise G(x)Ẇ to (1.3), we obtain the following Itô
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stochastic differential equations

dx = V (x)dt + G(x)dW , x ∈ Rn, (1.2)

where W is a standard m-dimensional Brownian motion for some
integerm ≥ n and G = (g ij)n×m is a matrix-valued function on Rn.

Regarded as a physical model, system (1.1) is often subject to
white noise perturbations either from its surrounding environ-
ment or from intrinsic uncertainties of a coupling system due to
high complexity, large degree of freedom, lack of full knowledge of
mechanisms, the need for organizing a large amount of data, etc.
Suppose that (1.1) generates a local flow on Rn. Analyzing the im-
pact of noise perturbations on the dynamics of the system is a fun-
damental issue with respect to both modeling and dynamics. The
study of this fundamental issue from a distribution point of view
naturally gives rise to the analysis of limit behaviors of stationary
measures of the Fokker–Planck equations associated with (1.2) as
G → 0 under an appropriate topology.

More precisely, consider noise coefficient matrices lying in the
class

G̃ = {G = (g ij) : Rank(G) ≡ n, g ij
∈ W 1,2p

loc (Rn),

i = 1, 2, . . . , n, j = 1, 2, . . . ,m}

for some fixed p > n. The class G̃ gives rise to the following class
of diffusion matrices:

Ã =


A = (aij) ∈ W 1,p

loc (Rn,GL(n, R)) : A =
GG⊤

2

for some G ∈ G̃


.

For each A =
GG⊤

2 = (aij) ∈ Ã, the stationary process generated
by (1.2) is described by its corresponding stationary measures
{µA} which are measure-valued solutions of the stationary
Fokker–Planck equation associated with (1.2) (see Section 2.1 for
details).

Let Ã be equippedwith the uniform topology of C(Rn) and con-
sider an admissible null family A = {Aα} ⊂ Ã, i.e., A is a directed
net with Aα → 0, and the Fokker–Planck equation correspond-
ing to each Aα ∈ A admits a stationary measure. Stability of dy-
namics of (1.1) under the noise family A can be characterized by
the behaviors of A-limit measures, i.e., sequential limit points of all
stationary measures {µAα } of the Fokker–Planck equations corre-
sponding to A = {Aα}, as Aα → 0, in the space M(Rn) of Borel
probability measures on Rn endowed with the weak∗-topology.
We recall from [1] that a compact invariant set Ω of (1.1) is said
to be A-stable if for any ϵ > 0 and any open neighborhood W of
Ω there exists a δ > 0 such that µAα (Rn

\ W ) < ϵ whenever
|Aα| < δ. An invariant measure µ of (1.1) is said to be A-stable if
any sequence of {µAα } converges to µ in M(Rn) as Aα → 0, i.e., µ
is the only A-limit measure.

A-stability of a compact invariant set of (1.1) has been
extensively investigated in [1]. In particular, it is shown in [1]
that if (1.1) admits a Lyapunov function whose second derivatives
are bounded, then its global attractor is A-stable with respect to
any null family A, and moreover, if the global attractor contains
a strong local attractor then there is an admissible null family A
such that the local attractor is A-stable. To the contrary, if the
global attractor contains a strong local repeller, then there is an
admissible null family A such that the local repeller is strongly
A-unstable, i.e., no A-limit measure can be concentrated on the
repeller. Moreover, if the repeller is a so-called strongly repelling
equilibrium, then it is strongly A-unstable with respect to any so-
called normal null family A.

In contrast to the case of compact invariant sets, not much
is known about the A-stability of invariant measures of (1.1). Of
course, if an A-stable compact invariant set is uniquely ergodic,

then it is clear that the unique invariant measure is also A-stable.
In general, stochastic stability of a non-ergodic invariant measure
ismuch harder to be characterized.Wemention somewell-known
studies in this regard for flows on a 2-torus [2], flows on a circle [3],
flows whose ω-limit sets consist of a finite number of fixed points
and periodic orbits [4], and flows on a compactmanifold admitting
SRB measures ([5], see also [6,7] for the case of random perturba-
tions of maps on a compact manifold).

In this paper, we pay particular attention to the stochastic
stability of compact invariant sets and invariant measures of a
gradient system

ẋ = −∇f (x), x ∈ Rn, (1.3)

where f ∈ C2(Rn).
As to be seen in this paper, not only does the stochastic

stability of compact invariant sets of (1.3) has very special natures,
but also the stochastic stability of invariant measures of (1.3)
can be characterized in various situations. Besides analyzing the
impact of noise perturbations on a gradient system, the study
of stochastic stability of invariant measures in a gradient system
is closely related to the problem of ergodicity when taking the
thermodynamic limit in a huge particle system [8] and the problem
of noise stabilizing a multi-stable gradient system [9].

It is well-known that if the gradient system (1.3) admits a weak
Lyapunov function then it always generates a positive semiflow in
Rn. Another special property of a gradient system is that when it is
dissipative, its global attractor is typically simple by consisting of
equilibria together with connecting orbits among them. However,
it follows from general results of [1] that noise perturbations
can remove all the connecting orbits among the equilibria in the
global attractor of a dissipative gradient system. More precisely,
if (1.3) admits a C2 Lyapunov function whose second derivative
is bounded, then (a) the set E of critical points of f is A-stable
with respect to any null family A; (b) any finite set J0 (resp. R0)
of isolated local minimal (maximal) points of f is A-stable (resp.
strongly A-unstable) with respect to a particular null family A; (c)
any simple local maximal point of f is strongly A-unstable with
respect to any normal null family A (see Theorem 2.1 for details).
When either the set E or J0 is a singleton, the A-stability of the
corresponding Dirac measure obviously follows from that of the E
or J0 with respect to all or a particular null family A.

However, stochastic stability of (1.3) has very special natures
under the additive white noise perturbation

√
2ϵẆ to (1.3), where

ϵ > 0 is a small parameter. Under the condition that

(H) there are positive constants R and β such that f (x) ≥ β log |x|
for all |x| ≥ R,

the Fokker–Planck equation corresponding to

dx = −∇f (x)dt +
√
2ϵdW , x ∈ Rn (1.4)

for each ϵ > 0 admits a stationary measure µϵ , called Gibbs
measure, with density

uϵ(x) = kϵe−
f (x)
ϵ , x ∈ Rn,

called Gibbs state, where

kϵ =
1

Rn e−
f (x)
ϵ dx

.

Limit behaviors of (continuum) Gibbs measures have been
explicitly investigated in many situations (see, e.g., [10,11]). These
limit behaviors lead to various A0-stability results of (1.3), where
A0 denote the family of diffusion matrices {ϵI} corresponding to
the additive noise perturbations. More precisely, it follows from
the limit characterizations of Gibbs measures in [11] that if the
condition (H) holds, then the set Sf of all global minimal points
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