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a b s t r a c t

A deformation theory of generalized holomorphic structures in the setting of (generalized)
principal fibre bundles is developed. It allows the underlying generalized complex
structure to vary together with the generalized holomorphic structure. We study the
related differential graded Lie algebra, which controls the deformation problem via
the Maurer–Cartan equation. As examples, we check the content of the Maurer–Cartan
equation in detail in the special cases where the underlying generalized complex structure
is symplectic or complex. A deformation theorem, together with some non-obstructed
examples, is also included.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

In generalized complex geometry, the notion of generalized holomorphic structures is the analogue of holomorphic
structures in classical complex geometry, including flat bundles over symplectic manifolds, co-Higgs bundles and
holomorphic Poisson modules as extreme examples. These examples are also the most studied cases to date: the flat case
is the most trivial one; N. Hitchin has studied certain aspects of co-Higgs bundles and also provided some interesting
examples [1,2], while [3] contains a detailed investigation of stable co-Higgs bundles overP1 andP2; the case of holomorphic
Poisson modules is less touched, in particular in the setting of generalized complex geometry—[4,5] contain some topics
concerning this. The construction of more general generalized holomorphic structures often involves more effort; for some
progress in this direction see [5,6].

In [6,7] the author has explored some local features of generalized holomorphic structures. In the formalism of reduction
theory of Courant algebroids and Dirac structures developed in [8], the author has also extended the notion of generalized
holomorphic structures to the context of (generalized) principal bundles [6]. This paper is then a continuation of that work,
motivated by the attempt to find more examples of generalized holomorphic structures.

One possibleway to obtainmore examples of generalized holomorphic structures is by deforming a given one. Recall that
in classical theory of deformations of holomorphic structures [9], one fixes a compact complexmanifold (M, J) togetherwith
a holomorphic vector bundle V and tries to find nearby holomorphic structures, but all these holomorphic structures are w.r.t.
the same complex structure J . Then infinitesimal deformations are contained inH1(M,O(End(V )))while the obstructions for
an infinitesimal deformation to be integrable live in H2(M,O(End(V ))).

One can certainly routinely apply a similar method to the generalized case, where the underlying generalized complex
structure should be fixed, and in this sense we call the resulting theory traditional.. However, there are some drawbacks. First,
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when deforming a usual holomorphic structure (viewed as a generalized holomorphic structure), one cannot go too far and
at most gets co-Higgs bundles. Second, the relevant cohomology groups (e.g. those associated to a Poisson module) are, to
some extent, the starting point to find nearby generalized holomorphic structures, but generally there still lacks any effective
way to compute them. Thus, for practical purposes, e.g. to probemore general generalized holomorphic vector bundles, this
way of deformation is not that useful.

Therefore, in this paper, wewill develop amore general deformation theory, which,more or less, can overcome the above
drawbacks. Asmany existing examples of generalized complexmanifolds are obtained by deforming simple ones, our choice
is that, we no longer restrict ourselves to a fixed underlying generalized complex structure—the generalized holomorphic
structure varies more freely, because the underlying generalized complex structure is also allowed to vary. In this direction,
the formalism of [6] is rather suitable for our purpose, so we start in the context of principal bundles and then work out its
vector-bundle counterpart.

The paper is organized as follows. In Section 2,we collect the necessary basics of generalized complex geometry. Section 3
is devoted to finding the correct differential graded Lie algebra (DGLA for short) governing the deformation problem. We
show how to define the differential and bracket at the level of equivariant objects over the principal bundle P and then
descend to the base manifold M . It turns out that the resulting DGLA is an extension of the DGLA controlling deformations
of the underlying generalized complex structure by the DGLA controlling traditional deformations of the generalized
holomorphic structure. This results in the infinitesimal deformation theory being described by a long exact sequence of
cohomology groups (cf. Theorem 3.6). In Section 4 we present the Maurer–Cartan equation and investigate it in detail in the
cases where the underlying generalized complex structure is actually symplectic or complex. Some new possibilities occur,
which are missing in the existing literature. Section 5 is devoted to proving the deformation theorem (cf. Theorem 5.3). As
the procedure is rather standard, we only outline the proof. Examples are presented, in which the obstruction vanishes.

2. Some preliminaries

We collect the basic material concerning generalized complex structures and generalized holomorphic structures. The
most relevant references are [4,6,8,10]. In this paper,M will always be a connected orientable smooth 2m-manifold.

Generalized geometry is the geometry related to the generalized tangent bundle TM := TM ⊕ T ∗M , or more generally,
a so-called exact Courant algebroid E.

Definition 2.1. A Courant algebroid overM is a real vector bundle E → M with a bracket [·, ·]c (Courant bracket) on Γ (E),
a nondegenerate symmetric bilinear form ⟨·, ·⟩, and an anchor map π : E → TM , satisfying the following conditions for all
e1, e2, e3 ∈ Γ (E) and f ∈ C∞(M):
• π([e1, e2]c) = [π(e1), π(e2)],
• [e1, [e2, e3]c]c = [[e1, e2]c, e3]c + [e2, [e1, e3]c]c ,
• [e1, fe2]c = f [e1, e2]c + (π(e1)f )e2,
• π(e1)⟨e2, e3⟩ = ⟨[e1, e2]c, e3⟩ + ⟨e2, [e1, e3]c⟩,
• [e1, e1]c =

1
2D⟨e1, e1⟩,

where D = π∗
◦ d : C∞(M) → Γ (E) (E and E∗ are identified using ⟨·, ·⟩).

Definition 2.2. E is called exact if it is an extension of TM by T ∗M , i.e. the sequence

0 −→ T ∗M
π∗

−→ E
π
−→ TM −→ 0

is exact.

Courant algebroids encountered in this paper are all exact and called Courant algebroids for short. Given E, one can always
find an isotropic right splitting s : TM → E, which has a curvature form H ∈ Ω3

cl(M) defined by

H(X, Y , Z) = ⟨[s(X), s(Y )]c, s(Z)⟩, X, Y , Z ∈ Γ (TM).

By the bundle isomorphism s + π∗
: TM ⊕ T ∗M → E, the Courant algebroid structure can be transported onto TM . Then

the pairing ⟨·, ·⟩ is the natural one, i.e. ⟨X + ξ, Y + η⟩ = ξ(Y )+ η(X), and the Courant bracket is

[X + ξ, Y + η]H = [X, Y ] + LXη − ιYdξ + ιY ιXH,

called the H-twisted Courant bracket. Different splittings are related by B-field transforms, i.e. eB(X + ξ) = X + ξ + ιXB,
where B is a 2-form.

A Courant algebroid E has more symmetries than the tangent bundle; in particular, the left adjoint action by a section of
E gives rise to an infinitesimal inner automorphism of E.

An isotropic subbundle A ⊂ E is called a generalized distribution and called integrable if it is involutive w.r.t. the Courant
bracket. An integrable maximal generalized distribution L is called a Dirac structure. These notions can be complexified and
what interests us here is the following complex Dirac structure1:

1 We use VC to denote the complexification of a real vector space or bundle V .
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