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h i g h l i g h t s

• Manuscript provides analytic solution for traveling wave profiles of the phase field crystal model in two dimensions.
• Solutions are derived for both parabolic and hyperbolic cases for a crystalline state invading both metastable and unstable liquids.
• Solutions are verified numerically and shown to be accurate in the small velocity limit near the liquid/solid phase transition.
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a b s t r a c t

The properties of a two dimensional crystalline phase invading a metastable or unstable liquid state are
examined using the amplitude expansion formulation of the hyperbolic and parabolic phase-field crystal
model. When the amplitudes are real and equal to each other, analytic expressions are derived for the
profile of a steady state liquid–solid front traveling at constant velocity. Numerical simulations of the
full amplitude formulation are conducted and compared with the analytic results. Close to the melting
transition the analytic results for the liquid–solid profile, velocity andwidth are in quantitative agreement
with the numerical results and disagree far from the transition.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

When phase transformations occur it is often the case that
interfaces or domain walls form between different phases or
states. The interaction and motion of these interfaces play a key
role in the subsequent evolution of the system. For example, in
order–disorder transitions domain walls form between different,
but energetically equivalent, variants of a given sublattice ordering.
Subsequent evolution towards equilibrium is then thought to be
driven by the curvature of the domain walls [1]. One reason that
many studies [2–4] have been devoted to understand the dynamics
and motion of such domain walls is that the motion often leads
to complex spatial structures which strongly influence material
properties. For example, properties such as the yield strength and
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magnetic coercivity are known to be a strong function of grain
size in polycrystalline materials [5]. Another interesting aspect of
interface motion is that when a stable phase invades a metastable
or unstable phase it is possible that the state that is selected at the
front is not exactly the equilibrium state as occurs when a periodic
phase invades a uniform state. In this instance, the periodicity that
is selected near the propagating front may not be the equilibrium
periodicity. This could potentially lead to a strained state or in
extreme circumstances a glassy state [6].

Recently, the phase field crystal (PFC) model has been used to
examine the dynamics of liquid–solid, grain boundaries and dislo-
cation motion [7–10]. The PFC model is a continuum model that
describes processes on atomic length scales and patterns on the
nano- and micro-length scales [10,11]. This model is character-
ized by a free energy that is a functional of a field (n) that is
periodic in the solid phase and uniform in a liquid state and an
equation of motion that conserves the average value of n. The pe-
riodicity of n naturally incorporates elasticity and multiple crystal
orientation which allows the model to be used to study a number
of phenomena including epitaxial growth, ordering of nano-scale
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structures on micron length scales [11], liquid–solid transitions,
dislocationmotion and plasticity, glass formation and foams, grain
boundary premelting, crack propagation, surface reconstructions,
grain boundary energies, dynamics of colloidal systems and poly-
mers (see overview [12] and references therein).

In a previous work the selection of a periodic state as it invades
an unstable statewas examined in the one-dimensional PFC-model
with both hyperbolic and parabolic dynamics [6]. A marginal sta-
bility analysiswas used to determine the velocity andperiodicity of
the front. It was found that the periodicity of the selected state was
different from the equilibrium state and as expected did depend
on the type of dynamics. For very high driving forces it was also
found that the periodicity selected was above the Eckhaus insta-
bility leading to the speculation of glassy states. The results of the
work [6] were quantitatively verified with direct numerical simu-
lations [13].

In this work we consider the solidification of a crystalline state
from a metastable or unstable liquid state as described by the
two-dimensional PFC model and develop analytic solutions for
a crystalline front invading the liquid. Here we assume that the
transition from the metastable state to the stable state occurs
by overcoming the energy barrier which is usually necessary for
the emergence of a new phase. Contrary to that, the transition
from the unstable state proceeds without energetic barrier that is
usually evolves by fluctuation mechanism. The analysis of these
two transitions is based on the amplitude representation of the PFC
model [14,15] in which the conserved scalar field n is represented
by a set of complex amplitudes that are assumed to vary on length
scales larger than thewavelength of n. The phase of the amplitudes
allows for elastic strains and multiple crystal orientation and the
magnitude of the amplitudes incorporates liquid–solid interfaces
and transitions. The combination of the phase and magnitude
allows for more complex features such as dislocations and grain
boundaries. However, some features, such as Peierls barriers and
faceting are missing from the amplitude description used in this
work, although higher order corrections are possible [16]. In
this paper analytic solutions for a crystalline front invading an
unstable and metastable liquid state are derived in the limit in
which the amplitude can be represented by a single magnitude
only. For comparison, numerical simulations of the full amplitude
description are also conducted.

The paper is organized as follows. Section 2 presents a
formulation of the model which introduces governing hyperbolic
PFC-equation. This equation describes simultaneously dissipation
for diffusive regimes existing in slow transitions and inertia
for propagative regimes occurring in fast phase transitions. In
Section 3, the amplitude equations are first introduced and then
simplified to a magnitude (φ) only description. In Section 4 the
equilibrium properties of the system are described in terms of φ.
The dynamics and traveling wave solution for the real amplitude
of the triangular pattern propagating into unstable andmetastable
homogeneous states are obtained. In Section 5, numerical solutions
of the full amplitude formalism are presented and compared
with the analytic solutions. Conclusions are given in Section 6.
Appendix A presents details of analytical method based on
amplitude wave representation. Appendix B gives details of the
computational scheme used in the numerical modeling. Finally,
Appendix C describes numerical estimations for the relaxation
times used in the presented model.

2. Hyperbolic PFC-model

The hyperbolic PFC model describes a first order liquid–solid
transformation in terms of a field, n(r⃗, t), that is related to the
dimensionless local atomic number density and a flux J⃗(r⃗, t). The

free energy functional [6,17] is a functional of n and J⃗ and can be
written in dimensionless form as

F [n, J⃗] = Feq[n] + Fneq [⃗J]. (1)

The local equilibrium contribution is given by [18]

Feq =

 n
2

L n −
a
3
n3

+
v

4
n4

dr⃗, (2)

where

L ≡ 1B0 + Bx
0(1 + 2R2

o∇
2)2. (3)

1B0, Bx
0, Ro, a and v are phenomenological parameters that can be

fit to various physical properties of the systems as discussed in
references [19,20,18,21]. Briefly the sum, Bℓ0 = 1B0 + Bx

0, is the
dimensionless liquid state compressibility, Bx

0 is proportional to
the elastic moduli, Ro sets the length scale of the lattice and a and
v determine the magnitude of the fluctuations in the solid state
and the size of the miscibility gap in n at liquid–solid coexistence.
The free energy functional (2) describes a transition from a liquid
state (n = constant) at high 1B0 to a crystalline state (n =

periodic) at low or negative values of 1B0 [18,21]. In this respect,
the parameter1B0 can be thought of as a control parameter similar
to a temperature difference.

The nonequilibrium contribution is given by

Fneq [⃗J] =
τ

2


J⃗ · J⃗ dr⃗, τ > 0, (4)

where τ is the characteristic time for relaxation of the flux J⃗ to its
steady state. The dynamics are described by a continuity equation
to ensure conservation of n, i.e.,

∂n
∂t

+ ∇⃗ · J⃗ = 0. (5)

The non-equilibrium contribution to energy (4) is introduced
phenomenologically by the extended thermodynamics [22] or by
the generalized hydrodynamics [23]. The requirement that the free
energy given in Eq. (1) decreases (or is constant) in time leads to
the hyperbolic equation [17,24]:

τ
∂2n
∂t2

+
∂n
∂t

= ∇
2 Ln − an2

+ vn3 . (6)

The hyperbolic phase-field equation (6) contains both the re-
laxation of slow conserved variable n(r⃗, t) and fast non-conserved
variable J⃗(r⃗, t) to their own steady-states (see Ref. [22] and ref-
erences therein). As a result of these two relaxation processes,
Eq. (6) shows that, in addition to the dissipation described by the
traditional parabolic PFC-equation [7], inertia ∝ ∂2n/∂t2 is also
taken into account due to kinetic contribution (4). Alternatively,
Eq. (6)was proposed by Stefanovic et al. [25,26] to incorporate both
fast elastic relaxation and slower mass diffusion. Similar equations
have also been obtained using dynamical density functional theory
by Archer [27]. As a result, Eq. (6) can describe the dynamics of a
periodic crystalline state invading a metastable or unstable liquid
state and vice versa. To obtain an understanding of these processes
an analytic solution will be derived by considering an amplitude
representation of Eq. (6) as described in the next section.

3. Amplitude’s equation

Formathematical convenience it is useful to write the solutions
of the atomic density n in terms of the following expansion

n = no +


klm

ηklm exp

iG⃗klm · r⃗
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+ c.c.


, (7)
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