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h i g h l i g h t s

• We develop a PDE model for ionic electrodiffusion and osmosis in biological tissue.
• An important feature of the model is the presence of a free energy identity.
• Relations to other electrophysiology models including the cardiac bidomain and cable models are discussed.
• The model is applied to the study of cortical spreading depression (SD).
• The model allows for successful computation of the extracellular DC shift in SD.
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a b s t r a c t

Ionic electrodiffusion and osmotic water flow are central processes in many physiological systems.
We formulate a system of partial differential equations that governs ion movement and water flow in
biological tissue. A salient feature of this model is that it satisfies a free energy identity, ensuring the
thermodynamic consistency of the model. A numerical scheme is developed for the model in one spatial
dimension and is applied to a model of cortical spreading depression, a propagating breakdown of ionic
and cell volume homeostasis in the brain.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we formulate a system of partial differential equa-
tions (PDE) that governs ionic electrodiffusion and osmotic water
flow, to study tissue-level physiological phenomena. To demon-
strate the use of the model, we apply this to the study of cortical
spreading depression, a pathological phenomenon of the brain that
is linked to migraine aura and other diseases.

We now describe our modeling approach. Biological tissue can
often be seen as composed of multiple interpenetrating compart-
ments. Cardiac tissue, for example, can be seen as composed of two
interpenetrating compartments, the space that consists of inter-
connected cardiomyocytes and the extracellular space. The num-
ber of compartments may not be restricted to two. In the central
nervous system, onemay consider the neuronal, glial and extracel-
lular compartments. In studying physiological phenomena at the
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tissue level, it is often impractical to usemodels with exquisite cel-
lular detail. If the spatial variations in the biophysical variables of
interest are slow compared to the cellular spatial scale, we may
model the system instead as a homogenized continuum. The first
such model, the bidomain model, was introduced in [1–3], and its
application to cardiac electrophysiology [4–6] is probably themost
important and successful example of this coarse-grained approach
in physiology. Let us use the cardiac bidomain model to further
to illustrate this approach. The main variables of interest in car-
diac electrophysiology are the intracellular and extracellular po-
tentials, φi(x) and φe(x) where x is the spatial coordinate. From a
microscopic standpoint, these values should only bedefinedwithin
their respective compartments. At the coarse-grained level, how-
ever, we take the view that it is impossible to distinguish whether
a given spatial point is inside the cell or outside the cell. The intra-
cellular and extracellular potentials are now defined everywhere
and cardiac tissue is thus seen as an biphasic continuum. In this
paper, we shall call such modelsmultidomain models to emphasize
the fact that the formalism is not restricted to just two interpene-
trating phases. We note that such coarse-grained models are also
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widely used in thematerial sciences to describe, for example, mul-
tiphase flow [7].

Our goal is to formulate a multidomain model that describes
ionic electrodiffusion and osmosis. This can be seen as a general-
ization of the cardiac bidomain model, which only treats electrical
current flow. Ionic electrodiffusion and osmosis have been mod-
eled to varying degrees of detail in different physiological systems.
These include the kidney [8], gastric mucosa [9], cerebral edema
and hydrocephalus [10], cartilage [11,12], and the lens [13] and
cornea [14] of the eye. Here, we develop a time-dependent PDE
model that fully incorporates both ionic electrodiffusion and os-
motic water flow in multiphasic tissue. Ion balance is governed
by theNernst–Planck electrodiffusion equationswith source terms
describing transmembrane ion flux. For water balance, we have
the usual continuity equations with source terms describing trans-
membrane water flow. An important feature that distinguishes
our model from previous models is that it satisfies a free en-
ergy identity, which ensures that electrodiffusive and osmotic ef-
fects are treated in a thermodynamically consistent fashion. The
use of free energy identities as a guiding principle in formulat-
ing equations originates in the work of Onsager [15], and this ap-
proach has been widely adopted in soft condensed matter physics
[16–19]. The present work is closely related to our recent work
in [20–23], wherein the free energy identity played an essential
role in ionic electrodiffusion problems arising in physiology and
the material sciences. One practical benefit of the physically con-
sistent formulation of our model is that it treats fast cable (or
electrotonic/electrical current) effects and themuch slower effects
mediated by ion concentration gradients in a single unified frame-
work. This is significant especially in the context of ionhomeostasis
in the brain, inwhich these fast and slow effects are both important
and tightly coupled.

To demonstrate the use of the model (and to test our compu-
tational scheme), we have included a preliminary modeling study
of cortical spreading depression (SD). SD is a pathological phe-
nomenon of the central nervous system, first reported 70 years
ago [24]. Neurons sustain a complete depolarization and loss of
functions for seconds to minutes. A massive redistribution of ions
takes place [25] resulting in extracellular potassium concentra-
tions in excess of 50 mmol/l. Also seen is neuronal swelling and
narrowing of the extracellular space. This breakdown in ionic
and volume homeostasis spreads across gray matter at speeds of
2–7 mm/min. SD is the physiological substrate of migraine aura,
and it is also related to other brain pathologies such as stroke,
seizures and trauma [26]. Studying SD is important, not only be-
cause of its close relationship with important diseases but also
because a good understanding of SD will lead to a better under-
standing of brain ionic homeostasis, and hence of the workings of
the central nervous system. Despite intensive research efforts, ba-
sic questions about SD remain unanswered [27,28]. We refer the
reader to [29–34] for reviews on SD.

There have been many modeling studies on SD propaga-
tion [35–47], most of which are of reaction–diffusion type. The
large excursions in ionic concentration necessitates incorporation
of ionic electrodiffusion and osmotic effects, and ourmodel is well-
suited for this application. As a natural output of our model, we
can compute the negative shift in the extracellular potential (neg-
ative DC shift), an important experimental signal of SD. To the best
of our knowledge, this is the first successful computation of this
quantity. We then examine the effect of gap junctional coupling
and extracellular chloride concentration on SD propagation speed.
In particular, we argue that gap junctional coupling is unlikely to
play an important role in SD propagation [42].

The paper is organized as follows. In Section 2 we formulate
the model. In Section 3, we discuss the free energy identity. This
identity allows us to place thermodynamic restrictions on the

Fig. 1. Biophysical variables in the model when the number of compartments
N = 3. Compartment 1 (bottom compartment) communicates with the
extracellular compartment 3 (middle compartment) through membrane 1, and
compartment 2 (top compartment) with compartment 3 throughmembrane 2. The
biophysical variables of interest in each compartment are the volume fractions αk ,
concentrations cki , the voltages φk , the pressures pk and the fluid velocities uk . The
transmembrane water flux γkwk is given in blue arrows and the transmembrane
ionic flux γkgk

i in green arrows. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

constitutive laws for the transmembrane fluxes. In Section 4, we
make the equations dimensionless and discuss model reduction
when certain dimensionless quantities are taken to 0. In particu-
lar, we clarify the relationship between our multidomain electrod-
iffusion model with the cardiac bidomain model. In Section 5, we
discuss the numerical discretization of our system.We devise a im-
plicit numerical method that preserves ionic concentrations and
satisfies a discrete free energy inequality. In Section 6, we perform
simulations of SD. Appendix A describes some of the details of the
SD model and simulation and Appendix B includes some remarks
on the computation of the extracellular voltage.

2. Model formulation

We suppose that the tissue of interest occupies a smooth
bounded region Ω ∈ R3. As discussed in Introduction, we view
biological tissue as being a multiphasic continuum. Suppose the
tissue is composed of N interpenetrating compartments which we
label by k. We assume that k = N corresponds to the extracellular
space and that all other compartments communicate with the ex-
tracellular space only.Whenwe only consider the intracellular and
extracellular spaces, N = 2 and the 2nd compartment will be the
extracellular space. In the central nervous system,wemay consider
neuronal, glial and extracellular spaces and the extracellular space
corresponding to the 3rd compartment, and the other two com-
partments communicating with the extracellular compartment. A
schematic diagram showing the biophysical variables in themodel
is given in Fig. 1.

To each point in space, we assign a volume fraction αk for each
compartment. By definition, we have:

N
k=1

αk(x, t) = 1. (2.1)

Note that αk is a function of space and time.
In the followingwe shall introduce several parameters thatmay

be influenced by the microscopic geometric details of the tissue.
Mechanical properties of cells and hydraulic conductivity are
examples of such parameters. We shall make the assumption that
these parameters depend on the underlyingmicroscopic geometry
only through its influence on αk.

In order to describe the time evolution of αk, we introduce the
water flow velocity field uk defined for each compartment. The
volume fraction αk satisfies the following equation:

∂αk

∂t
+ ∇ · (αkuk) = −γkwk, k = 1, . . . ,N − 1 (2.2)

∂αN

∂t
+ ∇ · (αNuN) =

N−1
k=1

γkwk. (2.3)
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