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h i g h l i g h t s

• We present mathematical models for analyzing force distributions in particulate systems.
• Persistent homology is used to compare the force networks in different granular systems.
• We consider the stability of the persistence diagrams with respect to experimental error.
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a b s t r a c t

We present mathematical models based on persistent homology for analyzing force distributions in par-
ticulate systems. We define three distinct chain complexes of these distributions: digital, position, and
interaction, motivated by different types of data that may be available from experiments and simulations,
e.g. digital images, location of the particles, and the forces between the particles, respectively. We de-
scribe how algebraic topology, in particular, homology allows one to obtain algebraic representations of
the geometry captured by these complexes. For each complexwe define an associated force network from
which persistent homology is computed. Using numerical data obtained from discrete element simula-
tions of a system of particles undergoing slow compression, we demonstrate how persistent homology
can be used to compare the force distributions in different systems, and discuss the differences between
the properties of digital, position, and interaction force networks. To conclude, we formulatewell-defined
measures quantifying differences between force networks corresponding to the different states of a sys-
tem, and therefore allow to analyze in precise terms dynamical properties of force networks.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Particulate systems consisting of a large number of particles
have attracted significant attention in the last decades. Despite sig-
nificant research on these systems, their properties are still not
well understood and some of them appear to be rather elusive. The
fact that the forces do not propagate uniformly in systems made
of interacting particles has been established in a number of dif-
ferent systems, including granularmatter, colloids, gels, emulsions
and foams, see, e.g., [1–4]. It is well accepted that the interparticle
forces play a key role in determining the mechanical properties of
static and dynamic systems; see e.g. [5] for an extensive review
of the role of interaction networks in the context of amorphous

∗ Corresponding author. Tel.: +1 9082792251.
E-mail addresses:miroslav@math.rutgers.edu (M. Kramár),

arnaud.goullet@gmail.com (A. Goullet), kondic@njit.edu (L. Kondic),
mischaik@math.rutgers.edu (K. Mischaikow).

solids. However there are no universal methods for describing and
quantifying relevant aspects of the interparticle forces. For exam-
ple, even the commonly used notion of ‘force chain’ – which we
take to mean a connected set of particles interacting by a larger
than average force – is not generally defined. One important goal
of this paper is to present a method that can be used to describe
precisely the global properties of force networks in both static and
dynamic settings.

Forces between interacting particles have been considered ex-
tensively from statistical point of view, in particular in the con-
text of dense granular matter (DGM). For example, the works by
Radjai and collaborators, see, e.g. [6,7], discussed the differences in
the probability density functions of strong and weak forces (dis-
tinguished by the forces being larger or smaller than the average
one) arising in simulations; Behringer and collaborators explored
these forces in the experimental systems built from photoelastic
particles, see e.g. [4]. Possible universality of the force distributions
has been considered [8], as well as the connections between force
and contact networks [9]. These works have provided a significant
insight into the statistical properties of the force distributions but
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by design do not focus on the structural properties of force net-
works.

Only recently, attempts have beenmade tomove beyond purely
statistical description and consider in more detail the proper-
ties of these networks. Examples of recent studies include works
by Tordesillas and collaborators, see [10–12] and the references
therein. These studies include extensive discussion of local proper-
ties of networks of forces based on the forces that particles expe-
rience and on their connectivity, including appropriately defined
force chains and force cycles with a particular emphasis on cy-
cles of length 3 and 4. Furthermore, these studies introduce meso-
scopic network properties such as degree, clustering coefficient
and centrality which describe particle arrangements. Averaging
these properties over the entire network allows to discuss the con-
nectionbetween the changes observed in themacroscopic network
properties to the underlying structural rearrangements of the ma-
terial.

Alternative approaches use network-type of analysis to discuss
the properties of force networks [13–15]. These works provide a
significant new insight and confirm that the properties of force net-
works are relevant in the context of propagation of acoustic sig-
nals [13], fracture [14], and compression and shear [15]. Topology
based approach has been considered aswell, with focus on the con-
tact network topology in isotropically compressed [16] and tapped
granular media [17]. A similar approach is considered in our re-
cent work [18], where we discuss connectivity of force networks,
including the dependence of the number of connected components
and holes/loops (quantified by the Betti numbers), on the (nor-
mal) force between the particles.While that work uncovered some
intricate properties of force networks and allowed to connect the
results of topology based analysis to the ones obtained using stan-
dard percolation-based approach, it was still based essentially on
counting components and loops at fixed magnitudes of force. As
such, it thus does not provide an understanding of how these geo-
metric structures persist through differentmagnitudes of the force.

In [19] we introduced the use of persistent homology [20,21] to
DGM. More recently, these ideas have been employed in the con-
text of tapped systems [22]. Conceptually persistent homology is
preferable to the above mentioned Betti number analysis. By de-
sign persistent homologymeasures the same geometric structures
as the Betti number analysis, but simultaneously records how these
structures appear, disappear or persist through different magni-
tudes of the force. Thus, two networks of forces could produce
identical information on the level of Betti numbers, i.e., the number
of connected components and loops, but still have distinct global
structures in the sense that as one varies the magnitudes of the
forces the relationships between the connected components and
loops are different. Therefore, the results presented in [19] pro-
vide better quantification of the properties of considered force net-
works and shed new light on the differences between the systems
that differ by their frictional properties and particle size distribu-
tions.

It should be noted however, that persistent homology is an ab-
stract tool. Hence, there is considerable freedom as to how it can
be employed. In this paper we provide a firm mathematical back-
ground for using persistent homology in the context of DGM. In
addition, we discuss different concepts for constructing and com-
paring the persistence diagrams. This allows us to compare the
features of different force networks both locally and globally and
hence is complementary to the approaches, discussed above, that
consider local properties of force networks. Furthermore, the abil-
ity to compare different force networks is crucial for quantifying
the dynamical properties of DGM.

In the next section we give an overview of persistence homol-
ogy and the structure of the paper.

2. Overview

In this paperwe introduce the concept of a force network,which
is designed to model force interactions between the particles. The
definition varies depending on available form of the data, but every
force network is described by a scalar function f : D → R.
The domain D models the particles and the function f models
the forces. Persistent homology is used to reduce the function f
to a collection of points in the plane. This collection of points is
called a persistence diagram and denoted by PD(f ). Each point in
the persistence diagram encodes a well defined geometric feature
of f .

It is useful to view persistent homology as a mapping from
scalar functions to persistence diagrams, e.g. f → PD(f ). Stated
more formally, persistent homology can be viewed as a function
from a space of scalar functions to a space of persistence diagrams.
A fundamental result is that with appropriate metrics on the space
of functions and on the space of persistence diagrams, persistent
homology is a continuous function [21]. At least theoretically this
implies that bounded noise or small errors in the measurement of
the DGM will lead to a small change in the associated persistence
diagram.

This theoretical potential combined with the successful appli-
cations presented in [19] suggests the need for a careful analysis
of the practical details of applying persistent homology to DGM.
There are at least three specific issues that need to be addressed:

1. Given a particular form of the experimental or numerical data,
how can one perform the persistent homology computations?

2. Having chosen a method by which the persistent homology
computations are being performed, how robust is the resulting
persistence diagram as a function of experimental or numerical
noise or errors?

3. How can the information provided by the persistence diagrams
be used to analyze DGM?

Addressing these issues in the context of DGM is the main focus of
this paper.

The first step in the construction of the force network is to es-
tablish the domainD onwhich the function f representing the force
interactions is defined. A contact network seems to be a natural
candidate for the domain D. Indeed, if positions and shapes of the
particles are known, then one can construct a contact network. If
the data is in the form of a digital image, then building a contact
network is more complicated. In Section 3 we start by introduc-
ing digital and position networks that are closely related to contact
networks. We investigate their stability with respect to measure-
ment errors and show that their topology can considerably differ
from the topology of the physical system they represent. Therefore
we propose an alternative domain, the interaction network. This is
an abstract mathematical concept and its topology is not related
to the topology of the physical system it represents. However, it
provides a fixed domain for describing the force networks in DGM.

Section 4 introduces homology, which can be crudely inter-
preted as a tool for counting connected components, loops and
cavities. The advantages of homology are that it supports efficient
algorithms, can be used in higher dimensions, and allows one to
compare components, loops, and cavities over different spaces.
Section 5 introduces force networks, clarifying the connection be-
tween the type of available data and formulation of appropriate
network. Section 6 focuses on persistence homology, our princi-
pal tool for analyzing the force networks. The interaction network
can be used in the setting of numerical simulations or experi-
ments (see, e.g., [4]), where complete information about the forces
between adjacent particles is known. However, for many experi-
ments only the total force experienced by a particle may be avail-
able [23]. This necessitates the use of a digital or position network.
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