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a b s t r a c t

We present an approach for analyzing initial-boundary value problems for integrable equations whose
Lax pairs involve 3×3matrices. Whereas initial value problems for integrable equations can be analyzed
by means of the classical Inverse Scattering Transform (IST), the presence of a boundary presents new
challenges. Over the last fifteen years, an extension of the IST formalism developed by Fokas and his
collaborators has been successful in analyzing boundary value problems for several of themost important
integrable equations with 2× 2 Lax pairs, such as the Korteweg–de Vries, the nonlinear Schrödinger, and
the sine-Gordon equations. In this paper, we extend these ideas to the case of equations with Lax pairs
involving 3 × 3 matrices.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Several of themost important PDEs inmathematics and physics
are integrable. Integrable PDEs can be analyzed by means of the
Inverse Scattering Transform (IST) formalism, whose introduction
was one of the most important developments in the theory of
nonlinear PDEs in the 20th century. Until the 1990s the IST
methodology was pursued almost entirely for pure initial value
problems. However, in many laboratory and field situations, the
wave motion is initiated by what corresponds to the imposition of
boundary conditions rather than initial conditions. This naturally
leads to the formulation of an initial-boundary value (IBV) problem
instead of a pure initial value problem.

In 1997, Fokas announced a new unified approach for the anal-
ysis of IBV problems for linear and nonlinear integrable PDEs [1,2]
(see also [3]). The Fokasmethodprovides a generalization of the IST
formalism from initial value to IBV problems, and over the last fif-
teen years, this method has been used to analyze boundary value
problems for several of the most important integrable equations
with 2 × 2 Lax pairs, such as the Korteweg–de Vries, the nonlin-
ear Schrödinger, the sine-Gordon, and the stationary axisymmet-
ric Einstein equations, see e.g. [2–12]. Just like the IST on the line,
the unified method yields an expression for the solution u(x, t) of
an IBV problem in terms of the solution of a Riemann–Hilbert (RH)
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problem. In particular, the asymptotic behavior of u(x, t) can be
analyzed in an effective way by using this RH problem and by em-
ploying the nonlinear version of the steepest descent method in-
troduced by Deift and Zhou [13].

The purpose of this paper is to develop a methodology for an-
alyzing IBV problems for integrable evolution equations with Lax
pairs involving 3 × 3 matrices. Although the transition from 2 × 2
to 3 × 3 matrix Lax pairs involves a number of novelties, the two
main steps of themethod of [1,2] remain the same: (a) Construct an
integral representation of the solution characterized via a matrix
RH problem formulated on the Riemann k-sphere, where k denotes
the spectral parameter of the Lax pair. This representation involves,
in general, some unknown boundary values, thus the solution for-
mula is not yet effective. (b) Characterize the unknown boundary
values by analyzing the so-called global relation. In general, the
characterization of the unknown boundary values involves the so-
lution of a nonlinear problem. However, for so-called linearizable
boundary conditions, this problem can be by-passed since the un-
knownboundary values canbe eliminatedusing only algebraicma-
nipulations.

In this paper, we will show how steps (a) and (b) can be
implemented for a prototypical example of an equation with a
3 × 3 Lax pair. We expect that a similar analysis will apply also
to other integrable equations with 3 × 3 Lax pairs, both on the
half-line and on the interval, although in certain cases additional
technical difficulties will arise. For example, for the Boussinesq
equation the behavior of the eigenfunctions near the point k = 0

0167-2789/$ – see front matter© 2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.physd.2012.01.010

http://dx.doi.org/10.1016/j.physd.2012.01.010
http://www.elsevier.com/locate/physd
http://www.elsevier.com/locate/physd
mailto:Jonatan_Lenells@baylor.edu
http://dx.doi.org/10.1016/j.physd.2012.01.010


858 J. Lenells / Physica D 241 (2012) 857–875

requires special attention.1 Physically relevant equations with
3 × 3 Lax pairs include the Boussinesq, Degasperis–Procesi [15],
Kaup–Kupershmidt [16], Sasa–Satsuma [17], Sawada–Kotera [18],
two-component vector nonlinear Schrödinger [19], and 3-wave
resonant interaction [20] equations.

1.1. The transition from 2 × 2 to 3 × 3 Lax pairs

Let us comment on some of the implications of the transition
from 2 × 2 to 3 × 3 Lax pairs. The implementation of the step (a)
mentioned earlier in the case of 2 × 2 matrix Lax pairs is achieved
by introducing eigenfunctions {µj(x, t, k)} which are defined by
integration from the ‘corners’ of the physical domain, see [3]. The
column vectors of the µj’s are bounded and analytic in different
sectors of the complex k-plane and these column vectors are
easily combined into a sectionally analytic function suitable for the
formulation of a RH problem. However, for a Lax pair involving
3 × 3-matrices, the bounded and analytic eigenfunctions suitable
for the formulation of a RH problem involve rather complicated
combinations of the entries of the µj’s. Moreover, because of the
limited domains of boundedness of the µj’s, the boundedness
properties of these combinations are not evident.Wewill therefore
use a different approach for finding these combinations and
their boundedness domains. Instead of taking the µj’s as our
starting point, we will define analytic eigenfunctions, denoted
by {Mn(x, t, k)}, via integral equations which involve integration
from all three corners simultaneously. In the absence of bound
states, this formulation is adequate. However, since the integral
equations defining the eigenfunctions now are of Fredholm rather
than Volterra type, there may exist points {kj}, kj ∈ C, at which
theMn’s have singularities. In order to deal with these singularities
(which are related to the existence of solitons), we will relate the
Mn’s to the µj’s by solving a matrix factorization problem.

Another difference in the implementation of step (a) is that the
RHproblem in the case of a 2×2 Lax pair splits the complex k-plane
into 4 sectors, whereas a larger number of sectors is in general
required in the case of 3 × 3 Lax pairs, e.g. for our main example,
the RH problem splits the complex k-plane into 12 sectors.

The implementation of the step (b) mentioned earlier involves
eliminating the unknown boundary values from the formulation
of the RH problem. In the case of linearizable boundary conditions
for equations with 2 × 2 matrices, this elimination is achieved
by algebraic manipulation of the so-called global relation and
the equations obtained from the global relation under certain
transformations in the k-plane. As shown in Section 4, similar
ideas can be used to analyze linearizable boundary conditions in
the case of 3 × 3 Lax pairs. However, in the 3 × 3 case the
algebraic relations cannot always be directly used to eliminate
the unknown boundary values from the definition of the jump
matrices. Instead, we will first analytically extend the domain
of definition of the jump matrix, before we utilize the algebraic
relations. Finally, we perform another analytic continuation to find
the expression for the jump matrix on the relevant contour. The
analyticity domains of the involved matrices are just sufficient to
allow for this approach.

Let us finally point out that some pioneering works on the
theory of inverse scattering for initial-value problems for equations
with 3 × 3 Lax pairs are [16,21,22]. Other examples of the use of
piecewise analytic solutions in studying the inverse problems for
n × n systems (particularly for n = 4) can be found in [23–25].

1 A similar situation arises for KdV for which the eigenfunctions have poles at
k = 0, see [14].

1.2. Organization of the paper

Our main example is introduced in Section 1.3. The spectral
analysis of the associated Lax pair is performed in Section 2. In
Section 3, we formulate the main RH problem, and this concludes
the implementation of step (a) above.

Step (b) is implemented in Sections 4 and 5. In Section 4, we
consider linearizable boundary conditions, whereas nonlineariz-
able boundary conditions are analyzed in Section 5. Section 6
contains some concluding remarks. In Appendix A, we explain the
relationship between the constructions of this paper and the for-
malism of [1,2] for 2 × 2 Lax pairs. In Appendix B, we use an ex-
tension of the standard Fredholm theory to study a set of integral
equations.

1.3. The main example

To be concrete, we will consider the system
iqt +

1
√
3
qxx + 2irrx = 0,

irt −
1

√
3
rxx + 2iqqx = 0,

(1.1)

where q(x, t) and r(x, t) are complex-valued functions of (x, t) ∈

Ω , withΩ denoting the half-line domain

Ω = {0 < x < ∞, 0 < t < T }

and T > 0 being a fixed final time. This system is the compatibility
condition of the 3 × 3 Lax pair
ψx − kJψ = V1ψ,

ψt + k2J2ψ = V2ψ,
J =

1 0 0
0 ω2 0
0 0 ω

 , ω = e
2π i
3 ,

(1.2)

where ψ(x, t, k) is a 3 × 3-matrix valued function, k ∈ C is
the spectral parameter, and {V1(x, t), V2(x, t, k)} are 3 × 3-matrix
valued functions given by

V1 =

0 q r
r 0 q
q r 0


, V2(x, t, k) = kV (1)2 (x, t)+ V (0)2 (x, t), (1.3)

V (1)2 =

 0 ωq ω2r
ωr 0 q
ω2q r 0

 ,
V (0)2 =

i
√
3

 0 qx −rx
−rx 0 qx
qx −rx 0


−

 0 r2 q2

q2 0 r2

r2 q2 0

 .
We will denote the initial data of (1.1) by {q0(x), r0(x)}, while
the Dirichlet and Neumann boundary values will be denoted by
{g0(t), h0(t)} and {g1(t), h1(t)}, respectively, i.e.

q(x, 0) = q0(x), r(x, 0) = r0(x), 0 < x < ∞;

q(0, t) = g0(t), r(0, t) = h0(t), (1.4)
qx(0, t) = g1(t), rx(0, t) = h1(t), 0 < t < T .

Remark 1.1. 1. We have chosen (1.1) as our main example,
because the Lax pair (1.2) is a natural 3×3 generalization of the
2 × 2 Lax pair for the nonlinear Schrödinger equation. Indeed,
the x and t parts of the Lax pair for NLS involve thematrices kσ3
and k2σ3, respectively, where σ3 is the diagonal matrix whose
entries are the second roots of unity, i.e. σ3 = diag (1,−1).
Analogously, the x and t parts of (1.2) involve the matrices kJ
and k2J2, where J is the diagonal matrix whose entries are the
third roots of unity.
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