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• First comprehensive study of the solution space to the fourth Painlevé equation.
• Extensions to parameter regimes that were unreachable by previous approaches.
• Previously known solutions found to be ‘non-typical’ of the general case.
• Solutions featuring singularity-free half-planes explored.
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a b s t r a c t

The six Painlevé equations were introduced over a century ago, motivated by rather theoretical consider-
ations. Over the last several decades, these equations and their solutions, known as the Painlevé transcen-
dents, have been found to play an increasingly central role in numerous areas of mathematical physics.
Due to extensive dense pole fields in the complex plane, their numerical evaluation remained challeng-
ing until the recent introduction of a fast ‘pole field solver’ (Fornberg and Weideman, 2011). The fourth
Painlevé equation has two free parameters in its coefficients, as well as two free initial conditions. Af-
ter summarizing key analytical results for PIV, the present study applies this new computational tool to
the fundamental domain and a surrounding region of the parameter space. We confirm existing analytic
and asymptotic knowledge about the equation and also explore solution regimes which have not been
described in the previous literature.

Published by Elsevier B.V.

1. Introduction

With the increasing presence of the Painlevé equations in the
reduction of partial differential equations (PDEs) [1–4] and the
subjects of combinatorics [5–7], orthogonal polynomials [8–12],
statistical physics [13–18], integrable continuous dynamical sys-
tems [19,20] and quantum physics [21–24] a greater understand-
ing of the solution space for each of the six equations is important.
A collection of applications specific to the PIV equation is presented
in [25]. In the past, solutions that are pole free along the real axis
have proven to be particularly relevant. As a resource for the fu-
ture, one present goal has been to identify such cases, as well as
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those with pole-free sectors in the complex-plane, throughout the
PIV equations four-parameter solution space.

The solutions of the six Painlevé equations (PI–PVI) are free from
movable branch points, but with the possibility of movable poles
or movable isolated essential singularities ([26], Section 32.2). This
Painlevé property inspired the introduction of a novel numerical
approach [27] – combining a Padé-based ODE solver [28] with a
partly randomized integration path strategy – that allowed for the
first time rapid numerical solutions of the Painlevé equations over
extended regions in the complex plane. It was first used for PI [27]
and later for PII [29]. It was then applied to the fourth Painlevé
equation
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in the special case of α = β = 0 [30]. As in these three previous
numerical studies, computational explorations in this paper are
limited to solutions u(z) that are real when z is real, although some
of the presented theory includes solutions that are not always real
on the real axis.

For a small portion of the two-dimensional (α, β)-parameter
space there exist examples of solutions expressible as rational
functions or in terms of special functions, such as the parabolic
cylinder function. These well-documented solutions appear, how-
ever, as only isolated points or one-parameter families in the four-
dimensional space of parameters and initial conditions (ICs). Much
of the present study is focused on the distribution of singularities
for solutions to (1). These are all first-order poles with residue +1
or −1.

The solutions presented in this paper are parameterized by α, β
and the values for u(0) and u′(0). Another way to parameterize the
solution space is through four ‘‘Stokesmultipliers’’, which provides
a link between the PIV equation and a certain Riemann–Hilbert
problem [31–35]. This approach is particularly well suited
for analytical work such as connection formulas and far-field
asymptotics. Distant pole field structures can also be approximated
via suitable transformations [36,37] (however, the present focus is
more on pole-free regions). The two parameterization approaches
can be related to each other utilizing, for instance, the software
RHPackage [38] to solve the Riemann–Hilbert problem (given a
set of Stokes multipliers and parameters to define α and β) to
determine the corresponding set of values for u(0) and u′(0).

1.1. Organization of the paper

Section 2 recalls some available theory, including symmetries
in PIV and different solution transformations. Section 3 discusses
closed form solutions of PIV, in particular solutions in terms of
rational and elementary special functions and also the asymptotic
behaviors presented in the literature. This is followed in Section 4
by the numerical approach used here to explore the much larger
space of solutions for which no closed form solutions are available.
Sections 5 and 6 describe such explorations of the parameter
and solution spaces, first highlighting the ‘‘fundamental domain’’
and then extending into inspections of the previously unexplored
region of β > 0, for which no instances of closed form solutions or
transformations have been reported.

2. Symmetries and solution hierarchies

This section describes the known symmetries in the PIV
equation and transformations that relate solutions for different
parameter choices.

2.1. Symmetries in the equation

Let PIV(α, β) be the set of all solutions of (1) for the particular
α and β . Direct inspection of (1) shows that if u(z) ∈ PIV(α, β),
then [39]

−u(−z) ∈ PIV(α, β), (2)

−iu(−iz) ∈ PIV(−α, β), and (3)

iu(iz) ∈ PIV(−α, β). (4)

Incidentally the first of these symmetries also holds for PIII (for all
parameter choices), but never for any of the other Painlevé equa-
tions. Due to these symmetries, any solution presented in this pa-
per has at least one other counterpart for the same choice of α
and β .

2.2. The Bäcklund and Schlesinger transformations

The equations PII through PVI have collections of transforma-
tions relating solutions for given parameters to those of differ-
ent choices. For instance, [39–42] collectively present sixteen such
transformations for PIV. Some of these transformations were not
always presented correctly. Updated expressions along with com-
putational verification of their forms can be found in [43].

3. Closed form solutions and asymptotic approximations

Before discussing the closed form solutions presented in the
literature, we note again that these at most form two-dimensional
manifolds in the four-dimensional solution space. That is, they
provide a very limited view of the solution types that are possible.

3.1. Rational solutions

The PIV equation has six different sequences of parameter
choices leading to rational solutions expressible in terms of either
Generalized Hermite or Generalized Okamoto polynomials [44],
with two particular choices leading to the only known entire so-
lutions, −2z and −(2/3)z. The locations of the parameter choices
in the (α, β)-plane leading to such solutions are shown in Fig. 1 as
dark (blue) and light (yellow) hexagrams for Generalized Hermite
and Generalized Okamoto polynomials, respectively.

3.2. Special function solutions

In addition to the rational solutions, PIV admits solutions that
are described by combinations of special functions; cf. [26], chap-
ters 12 and 13. This includes solutions expressible in terms of
parabolic cylinder functions, Dν(ζ ) [5,45], and, as discoveredmore
recently, solutions in terms of the confluent hypergeometric func-
tion, 1F1(a, b; ζ ), [23,24]. In either case, for each of the appropriate
choices of α and β there is a one parameter family of solutions that
are expressible in terms of these special functions. Fig. 1 displays
the locations of all such parameter choices as black curves.

Three distinct types of solutions have been proposed in the
form of determinants involving parabolic cylinder functions [5,45].
However, only one of these expressions has been confirmed nu-
merically [43].

3.3. Asymptotic approximations

Beyond the known closed form solutions, it is noted in [26],
section 32.11, that when β = 0, there are solutions that decay
asymptotically along the real axis either as z → +∞ or z → −∞.
These solutions result from assuming that the second derivative
term in (1) is negligible.

When assuming instead that both the first and second deriva-
tive terms in (1) are negligible, the method of dominant balance
(see, e.g., [46], section 3.4) leads to the quartic equation

3
2
ŵ(z)4 + 4zŵ(z)3 + 2(z2 − α)ŵ(z)2 + β = 0. (5)

Each root of (5) provides a leading asymptotic term for solutions
that are smooth as z → ±∞. Any number of further terms then
follow by substitution into (1). For instance, (6) through (9) illus-
trate the first two terms.
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