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h i g h l i g h t s

• We provide a full extreme value theory for dynamical systems perturbed with instrument-like-error.
• Numerical experiments support the theoretical findings.
• Fractal dimensions can be recovered in perturbed systems.
• The theory allows for studying recurrences on finite time series.
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a b s t r a c t

In this paper we prove the existence of extreme value laws for dynamical systems perturbed by the
instrument-like-error, also called observational noise. Anorbit perturbedwith observational noisemimics
the behavior of an instrumentally recorded time series. Instrument characteristics – defined as precision
and accuracy – act both by truncating and randomly displacing the real value of a measured observable.
Here we analyze both these effects from a theoretical and a numerical point of view. First we show that
classical extreme value laws can be found for orbits of dynamical systems perturbed with observational
noise. Then we present numerical experiments to support the theoretical findings and give an indication
of the order of magnitude of the instrumental perturbations which cause relevant deviations from the
extreme value laws observed in deterministic dynamical systems. Finally, we show that the observational
noise preserves the structure of the deterministic attractor. This goes against the common assumption
that random transformations cause the orbits asymptotically fill the ambient space with a loss of
information about the fractal structure of the attractor.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

In two previous works [1,2], we investigated the persistence
of Extreme Value Laws (EVLs) whenever a dynamical system is
perturbed throughout random transformations. We considered an
i.i.d. stochastic process (ωk)k∈N with values in the measurable
space Qε and with probability distribution θε . After associating to
each ω ∈ Qε a map Tω acting on the measurable space Ω into it-
self, we considered the random orbit starting from the point x and
generated by the realization ωn = (ω1, ω2, . . . , ωn):

Tωn := Tωn ◦ · · · ◦ Tω1(x).
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In this setting the transformations Tω are taken close to each other
and the suitably rescaled scalar parameter ε is the strength of such
a distance. We could therefore define a Markov process Xε on Ω

with transition function

P(x, A) =


Qε

1A(Tω(x))dθε(ω), (1.1)

where A ∈ Ω is a measurable set, x ∈ Ω and 1A is the indica-
tor function of a set A. We recall that a probability measure µε is
called a stationary measure if for any measurable A we have:

µε(A) =


Ω

Pε(x, A)dµε(x).

Moreover, we call it an absolutely continuous stationary measure
(acsm), if it has a density with respect to the Lebesgue measure
whenever Ω is a metric space.

In this work we consider a different type of perturbation, the
observational noise, which consists in replacing the orbit of the

http://dx.doi.org/10.1016/j.physd.2014.04.011
0167-2789/© 2014 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.physd.2014.04.011
http://www.elsevier.com/locate/physd
http://www.elsevier.com/locate/physd
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physd.2014.04.011&domain=pdf
mailto:davide.faranda@cea.fr
mailto:vaienti@cpt.univ-mrs.fr
http://dx.doi.org/10.1016/j.physd.2014.04.011


D. Faranda, S. Vaienti / Physica D 280–281 (2014) 86–94 87

point x ∈ Ω at time i, namely T ix, with T ix + ωi. There are several
physical motivations to investigate the behavior of this kind of
perturbation. In fact, as Lalley and Noble wrote in [3]:

‘‘. . . In this model our observations take the form yi = T ix + ωi,
where ωi are independent, mean zero random vectors. In contrast
with the dynamical noise model (e.g.; the random transforma-
tions), the noise does not interact with the dynamics: the deter-
ministic character of the system, and its long range dependence,
are preserved beneath the noise. Due in part to this dependence,
estimation in the observational noise model has not been broadly
addressed by statisticians, though the model captures important
features of many experimental situations.’’

Judd [4], quoted in [5], also pointed out that:

‘‘. . . the reality is that many physical systems are indistinguishable
from deterministic systems, there is no apparent small dynamic
noise, and what is often attributed as such is in fact model error.’’

Moreover, a system contaminated by the observational noise raises
the natural and practical question whether it would be possible
to recover the original signal, in our case the deterministic orbit
{T ix}i≥1. In the last years a few techniques have been proposed
for such a noise reduction [6]: we remind here the remarkable
Schreiber–Lalley method [7–10], which provides a very consistent
algorithm to perform the noise reduction when the underlying
deterministic dynamical system has strong hyperbolic properties.
Another interesting work shows that in the computation of
some statistical quantities, the dynamical noise corresponding to
random transformations could be considered as an observational
noise with the Cauchy distribution [11]. Finally, the paper [12]
proves concentration inequalities for systems perturbed by
observational noise.

The present work tries to re-frame the previous findings in
termsof extremevalue theory (EVT) by adding a furthermotivation
driven by the applicability of the whole EVT for dynamical
systems to experimental data. It should be a general concern to
check the role of instrument-like-perturbations before applying
dynamical systems techniques to experimental datasets. In this
sense, the dynamical systems considered in this paper share
several properties with observed time series, as the observational
noise acts exactly as a physical instrument. The goal is to exploit the
recent advancements of the EVT for dynamical systems to define
in a more rigorous way the extremes of time series. A successful
application of the theory presented in this paper to experimental
datasets is given in [13], where temperature data are analyzed
with the algorithmic procedure presented in Section 4.2. More
specifically, our interest is to understand which way the results
obtained on deterministic dynamical systems are altered by the
addition of observational noise and in which cases one can recover
classical EVLs. We start the discussion by summarizing the main
findings of the EVT for dynamical systems.

The first rigorous mathematical approach to EVT in dynamical
systems goes back to the pioneer paper by Collet [14]. Important
contributions have successively been given in [15–17] and in [18].
Here we briefly recall the main findings deferring to the previous
papers for the full demonstrations.

Let us consider a dynamical system (Ω, B, ν, T ), where Ω is
the invariant set in some manifold, usually Rd, B is the Borel
σ -algebra, T : Ω → Ω is a measurable map and ν a probability
T -invariant Borel measure.

In order to adapt the EVT to dynamical systems, we follow [15].
We consider the stationary stochastic process X0, X1, . . . given by:

Xm(x) = w(dist(Tmx, z)) ∀m ∈ N, (1.2)

where ‘dist’ is a distance on the ambient space Ω , z is a given
point andw is a suitable functionwhichwill be specified later. This

particular functional form has been introduced first by Collet [14]
and allows for a direct connection between recurrence properties
around a point of the phase space z and the existence of EVLs.
The object of interest is the distribution of P(Mm ≤ um), where
Mm := max{X0, . . . , Xm−1};wehave anEVL forMm if there is a non-
degenerate distribution function H : R → [0, 1] with H(0) = 0
and, for every τ > 0, there exists a sequence of levels um = um(τ ),
m = 1, 2, . . . , such that

m P(X0 > um) → τ , as m → ∞, (1.3)

and for which the following limit holds:

P(Mm ≤ um) → 1 − H(τ ), asm → ∞.

The motivation for using a normalizing sequence um satisfying
(1.3) comes from the case when X0, X1, . . . are independent and
identically distributed (i.i.d.). In this setting, it is clear that P(Mm ≤

u) = (F(u))m, being F(u) the cumulative distribution function for
the variable u. Hence, condition (1.3) implies that

P(Mm ≤ um) = (1 − P(X0 > um))m ∼


1 −

τ

m

m
→ e−τ ,

as m → ∞. Note that in this case H(τ ) = 1 − e−τ is the stan-
dard exponential distribution function. By choosing the sequence
um = um(y) as one parameter families like um = y/am + bm,
where y ∈ R and am > 0, for all m ∈ N and w as above, we have
P(am(Mm − bm) ≤ y) → G(y) whenever the variables Xi are i.i.d.,
if for some constants am > 0, bm. When the convergence occurs
at continuity points of G (G is non-degenerate) then Gm converges
to one of the three EVLs rewritable in terms of the Generalized Ex-
treme Value (GEV) distribution as:

G(y; κ) = exp

[1 + κy]−1/κ . (1.4)

Here κ ∈ R is the shape parameter also called the tail index:
when κ → 0, the distribution corresponds to a Gumbel EVL; when
the tail index is positive, it corresponds to a Fréchet EVL; when
κ is negative, it corresponds to a Weibull EVL. The EVL obtained
depends on the kind of observable chosen. In particular, in [14,15]
the authors have shown that, once taken the observable:

w(y) = − log(y), (1.5)

one gets a Gumbel EVL, here y = dist(Tmx, z). In the next section
we prove the existence of Gumbel law for themaps perturbedwith
observational noise. It is in fact possible to introduce other observ-
ables than the one specified above in order to get convergence to-
wards Fréchet andWeibull EVLs. However, for any choice different
from w(y) = − log(y), the tail index can be written in terms of
the local dimension (see Eqs. (4.2)–(4.4) in [19]). For a sequence
(um)m∈N satisfying (1.3) we define:

Um := {X0 > um}. (1.6)

When X0, X1, X2, . . . are not independent, the standard expo-
nential law still applies under some conditions on the dependence
structure. These conditions are the following:

Condition (D2(um)). We say that D2(um) holds for the sequence
X0, X1, . . . if for all ℓ, t andm,

|P(X0 > um ∩ max{Xt , . . . , Xt+ℓ−1 ≤ um})

− P(X0 > um)P(Mℓ ≤ um)| ≤ γ (m, t), (1.7)

where γ (m, t) is decreasing in t for each m and mγ (m, tm) → 0
whenm → ∞ for some sequence tm = o(m).

Now, let (km)m∈N be a sequence of integers such that

km → ∞ and kmtm = o(m). (1.8)
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