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In this paper, we revisit Sherratt’s avascular tumor growth system modeled in terms of the
continuum densities of proliferating, quiescent and necrotic cells, together with the consid-
eration of the generic nutrient supply from underlying tissue and cell movement of contact
inhibition. By adopting a perturbation method combined with the Banach fixed point the-

orem, we theoretically justify the existence of the traveling wavefronts for this model.
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1. Introduction

Tumor development typically contains three distinct
stages, i.e., avascular, vascular and metastasis, each of
which has specific problems that need to be solved by dif-
ferent researchers. For instance, for the growth of a solid
tumor, at first a normal cell develops into a tumor one
due to gene mutations triggered by environmental and
hereditary effects. After abnormal division, such a cell be-
comes a mass of cells called non-metastatic solid tumor.
With sufficient nutrients supplied by the body, this solid
tumor continues to grow beyond a certain threshold and
then forms its own spiral vessel tissue, through which,
some of the tumor cells can escape from the primary loca-
tion via the circulatory system (metastasis). As such, this
process (angiogenesis) can generate the secondary tumor
elsewhere in the body and causes the patients to die or re-
duces permanently their quality of life.

Due to some characteristics of avascular tumor growth,
such as the undetectable size of the cell masses or long-
term dormant state, it is difficult to conduct experimental
researches in vivo. As such, mathematical modeling has be-
come a promising research method for analysis of avascu-
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lar tumor growth in past decades. The earliest work related
to this was done by Thomlinson and Gray [13]. Among pre-
vious modeling, the ODE model of Mueller-Klieser [7] is a
good study for the avascular tumor growth. In this paper,
the author predicted the variation in the concentration of
oxygen and other nutrient through a spheroid, and deter-
mined the diffusion coefficients by experimental data.

In 1972, Greenspan [5] developed a PDE model. Taking
into account spatial structure, he separated the proliferat-
ing, quiescent and necrotic cell into three different com-
partments. Lately, this approach has been extended by
Byrne [1] and Friedman and Reitich [4]. By using a weakly
nonlinear analysis, Byrne extended previous results to
show the interaction of the amplitudes of the asymmetric
modes. Friedman and Reitich discussed a model of tumor
which grows or shrinks due to proliferation of cells that de-
pends on nutrient concentration modeled by a diffusion
equation. After assuming that the tumor is spherically
symmetric and its boundary is an unknown function of
time t, they gave detailed analytical studies of solutions
of the model.

Because separation of proliferating, quiescent and ne-
crotic cell into different compartments led to the problem
to determine the location of the interfaces between the
compartments, in 1997 and 1999, Ward and King [14,15]
constructed a nonlinear PDE model describing the spatial
structure of avascular tumor growth that does not assume
distinct cell layers, and instead proposed a continuum of
cells in two states, living or dead cell populations together
with quiescent cells ignored for simplicity. Numerical
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solutions of the model showed that after a period of time,
the variables settle to a constant profile propagating at a
fixed speed, and the growth ultimately either tends to a
steady-state (growth saturation) or becomes linear. Both
the travelling wave and steady-state limits of the model
are derived and studied.

In 2001, Sherratt and Chaplain [11] introduced a new
mathematical model for avascular-tumor growth. They
modeled it in terms of continuum densities of proliferat-
ing, quiescent and necrotic cell, with a generic nutrient
supply from underlying tissue, which arise in the two-
dimensional condition of a tumor growth within an epi-
thelium. Based on the cell movement of contact inhibition
of migration (see [12]), they considered the following
reaction-diffusion model:
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As stated in [11], p(x,t),q(x,t) and n(x,t) represent the pro-
liferating, quiescent and necrotic cell densities, respec-
tively. c(x,t) is the concentration of the generic nutrient.
The product of the fraction p/(p +q) and the overall flux
—V(p + q) indicates the flux for population p, with the flux
of quiescent cells given similarly, both unaffected by ne-
crotic cells. g(c) denotes the proliferating cell division rate.
The proliferating cell becomes quiescent at a rate
flc)(<g(c)), and the quiescent cell turns into necrotic at a
rate h(c). ¢ is the nutrient concentration in the absence
of a tumor cell population; D, k; and k; are constant; the
parameter o < (0,1] (see [11,12] for details). To simply
the model, in [11] Sherratt and Chaplain assumed that
the nutrient kinetics are always at a quasi-steady state,
that is, the density of the nutrient is given by

o Coll —(p+q-+m)
-Gl ospaar)

where the constant y = ﬁ—; As such, system (1.1) reduces to
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The existence of traveling waves of (1.2) was formally (not
rigorously) analyzed in [11]. By the standard stability anal-
ysis near the equilibrium (0,0,0), they showed that the
wave speed a must satisfy

a > 2,/g(co) - f(co)-

When the wave speed is large, a formal analysis of waves,
by neglecting the highest derivatives in the travelling wave

equations corresponding to system (1.2), was provided.
Numerical simulation was carried out there to confirm
their analysis. Biologically, here the wave patterns
(p,q,n), connecting the two steady states (0,0,s0) and
(0,0,0) with a moving speed c, indicates the advancing
pulses of proliferating and quiescent cells with a gradually
growing necrotic behind. These phenomena can be numer-
ically observed by the choice of some appropriate initial
data [11].

Although recently there are considerable new contri-
butions in the modeling of avascular tumor growth (see
e.g., [10,6] and references therein), the goal of this paper
is only concerned with the mathematical understanding
of the wavefronts for the model in [11]. We will theoret-
ically prove the existence of traveling wave solution for
(1.1) with large wave speeds by using a fixed point theo-
rem. We should mention that the method here is devel-
oped from the past references Faria et al. [3], Ou and
Wu [8,9] and Zhu et al. [16], but there are significant
differences:

o The diffusion term in [3,8,9] is linear, but now in our
case the contact inhibition gives the non-linear diffu-
sion%[p%q%(erq) .

e In the past results, all of them require that the
reduced system at the equilibria is hyperbolic in the
sense that characteristic equation of its linearized sys-
tem has no solution 4 with the real part of 1 equal to
zero. However, in our case, for the linearized system
of (2.4) near the equilibria (0,0,0) or (0,0,s,), there
always exists one eigenvalue equal to zero; see
Remark 2.1.

In the rest of this paper, we first prove the existence of
traveling waves for some special cases by the fixed point
theorem, and in Section 3, we will discuss how to extend
our method to study the traveling wave solution for gen-
eral system (1.2).

2. Traveling wave solutions with large wave speed

In this section, we want to prove rigorously the exis-
tence of traveling waves to (1.2). To simplify our analysis,
we first assume that the cell division rate g(c) = 1. More-
over, since the fourth equation in (1.2) gives a complicated
relation

_ Co[1 —ap+q+n)]
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we may assume that y is sufficiently large so that p/y ~0
and thus we have a simple equality

€=co[l —a(p+q+n).

In fact, as we can see from Fig. 3 in [11], the parameter y
is equal to 10 and the density of p is less than 0.4, and
the quotient p/y <0.04. This type of simplification
greatly facilitates our analysis and we have the following
system
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