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h i g h l i g h t s

• The Keller–Segel system with logistic growth exhibits two types of oscillations.
• Different transitions of patterns depending on a certain parameter are observed.
• The origin of one of the oscillations is a relaxation oscillation.

a r t i c l e i n f o

Article history:
Received 2 August 2013
Received in revised form
17 February 2014
Accepted 10 March 2014
Available online 18 March 2014
Communicated by Y. Nishiura

Keywords:
Chemotaxis
PDE models
Spatio-temporal pattern
Relaxation oscillation

a b s t r a c t

The Keller–Segel system with the logistic growth term is discussed from the spatio-temporal-oscillation
point of view. This system exhibits two different types of spatio-temporal oscillations in certain distinct
parameter regimes. In this paper, we study the difference between the two types of spatio-temporal
oscillations. In particular, the characteristic properties of the behaviors become clear in a limiting system
when a certain parameter value tends to zero. Moreover, we demonstrate that the onset of one of the
spatio-temporal oscillatory patterns is an infinite-dimensional relaxation oscillation that consists of slow
and fast dynamics.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Several types of pattern phenomena can be observed in nature.
For the theoretical understanding of such pattern phenomena, PDE
models have been proposed and analyzed ([1] and the references
therein). Among these models, Keller–Segel-type systems with
growth have been proposed in order to describe the pigmentation
pattern formation on snakes, pattern formation in bacterial
colonies of Salmonella typhimurium, tumor cell invasion of tissue,
and so on (for instance, [2–9]). A general form of the systems is as
follows:
ut = Du1u − div(u∇χ(v))+ f (u),
vt = Dv1v + g(u, v),
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where u and v indicate the cell density with diffusion rate Du and
the concentration of a chemical substance with diffusion rate Dv ,
called chemoattractant, respectively. The second term of the right
hand side in the equation for u implies that the cells directly mi-
grate to the higher concentration region of the chemoattractant
in the macroscopic scale, which process is called chemotaxis. The
function χ(v) included in the chemotaxis term denotes a sen-
sitivity function for the chemoattractant. For the explanation of
χ(v), we refer to the papers [10,11] and the references therein.
Typical examples of the sensitivity function are χ(v) =

αv
1+βv

(Michaelis–Menten receptor kinetics), χ(v) = αv (direct mea-
surement), and so on. The third term f (u) in the equation for u
represents the proliferation of cells. A well known example of the
growth term is the logistic growth f (u) = δu(1 −

u
K ), where δ and

K denote the growth rate and the carrying capacity of u, respec-
tively. Further, g(u, v) indicates the production and degradation
of the chemoattractant. The simplest form is g(u, v) = au − bv,
where both the production and the degradation of the chemoat-
tractant occur at constant rates.
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Fig. 1. One-dimensional spatio-temporal oscillatory patterns arising in the Keller–Segel-growth system (1.3), (1.4), and (1.5). The left and right figures correspond
respectively to u and v, where the color scale indicates that white color corresponds to zero and black color corresponds to values greater than two. The horizontal and
vertical axes in the figure indicate space x and time t , respectively. (a) A regular spatio-temporal oscillation when the parameter values are D = 1.2, α = 7, δ = 0.4, and
L = 20. (b) An irregular spatio-temporal oscillation when the parameter values are D = 0.5, α = 6, δ = 1, and L = 20.

In this paper, we deal with the following simplest Keller–Segel
system with growth:
ut = Du1u − αdiv(u∇v)+ δu


1 −

u
K


,

vt = Dv1v + au − bv,
(1.1)

where all parameters are positive constants. By using the following
rescaling for nondimensionalization:

x∗
=


b
Dv

x, t∗ = bt, u∗
=

u
K
, v∗

=
bv
aK
,

D∗
=

Du

Dv
, α∗

=
αaK
Dvb

, δ∗
=
δ

b
,

(1.1) is written as
ut = D1u − αdiv(u∇v)+ δu(1 − u),
vt = 1v + u − v,

(1.2)

where asterisks are dropped.We call (1.2) the Keller–Segel-growth
system. Here, we consider (1.2) in one space dimensionut = Duxx − α(uvx)x

+ δu(1 − u),
vt = vxx + u − v,

t > 0, x ∈ I := (0, L) (1.3)

with the Neumann boundary conditions
ux(t, 0) = ux(t, L) = 0,
vx(t, 0) = vx(t, L) = 0, t > 0 (1.4)

and the initial conditions
u(0, x) = u0(x),
v(0, x) = v0(x),

x ∈ I. (1.5)

It is obviously known that (u, v) = (1, 1) is a spatially homoge-
neous stationary solution of (1.3) and (1.4). It is a natural first step
to study how the solution’s stability changes depending on the pa-
rameters in (1.3). For instance, we assume α as a free parameter
and fix δ suitably.Whenα = 0, the equation foru is simply reduced
to the Fisher–KPP equation [12]. Consequently, it is well known
that u = 1 is the stable homogeneous stationary solution. There-
fore, when α is small, we note that (1, 1) is stable. On the other
hand, when α is suitably large, we can expect that (1, 1) is desta-
bilized due to the strength of the chemotaxis effect. This is called
the chemotaxis-induced instability. Conversely,whenwe assume δ
as a free parameter and fix α appropriately, the stationary solution
(1, 1) should be stable for large δ values because the growth effect
becomes dominant, that is, u approaches 1 everywhere. However,
when δ decreases, the homogeneous stationary solution (1, 1) is

Fig. 2. One-dimensional irregular spatio-temporal oscillation arising in the
Murray–Myerscough system (1.6), (1.4), and (1.5). The parameter values are D = 1,
α = 10, β = 0.1, δ = 1, and L = 20.

destabilized by virtue of the aggregation effect because (1.3) in the
extreme case of δ = 0 is reduced to the classical Keller–Segel sys-
tem [13,1]. Therefore, we note that α and δ are important param-
eters contributing to the occurrence of instability of the spatially
homogeneous stationary solution (1, 1).

Recently, it has been reported by Painter and Hillen [14] that
spatio-temporal oscillatory patterns are observed in (1.3), (1.4),
and (1.5) in a certain parameter regime. They also observed
irregular spatio-temporal oscillations, as shown in Fig. 1(b), and
they conclude that such irregularity should be chaos by computing
the Lyapunov exponent. Further, they conclude that a series of
periodic solutions reaches chaos through the period-doubling
cascade when a certain parameter is varied (see Figure 9 in [14]).
This type of spatio-temporal oscillation is observed for a wide
range of the parameter values and a wide class of chemotaxis
systems (see for instance, [3,4,15,16]). In fact, one example is the
following Murray–Myerscough system introduced in [8]
ut = Duxx − α (uvx)x + δu(1 − u),

vt = vxx +
u

1 + βu
− v, t > 0, x ∈ I (1.6)

with zero-flux boundary conditions, which also generates an irreg-
ular spatio-temporal oscillation qualitatively similar to the one in
Fig. 1(b) for appropriate parameter values, as shown in Fig. 2.

In this paper, we emphasize that there occurs another type
of spatio-temporal oscillation in the Keller–Segel-growth system
(1.3), (1.4), and (1.5), as shown in Fig. 3(a). It appears that the
behavior of the spatio-temporal oscillatory pattern in Fig. 3(a) is
drastically different from the one in Fig. 1. Such a pattern is also
observed in the Murray–Myerscough system (1.6), (1.4), and (1.5),
as shown in Fig. 3(b) and a related system [17]. Here, we note on
the numerical scheme to solve (1.3) or (1.6)with (1.4) and (1.5) that
all figures in the present paper are computed by the finite volume
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