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• The exponential synchronization of the Kuramoto model with spatially local coupling.
• A new novel approach without the linearization and perturbation method.
• Sufficient conditions for initial configurations leading to the exponential decay toward the completely synchronized states.
• Relations between the decay rates and eigenvalues of the graph Laplacian.
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a b s t r a c t

We study the generalized Kuramoto model of coupled phase oscillators with a finite size, and discuss the
asymptotic complete phase–frequency synchronization. The generalized Kuramoto model has inherent
difficulties in mathematical approaches that this model is governed by nonlinear equations and the
Kuramoto oscillator is arbitrarily connected with the others. To overcome these mathematical barriers,
many researchers have adopted a linearization of homogeneous solutions, and applied a perturbation
method. However, we introduce a new method which just requires some conditions on the smallest and
largest positive eigenvalues of the graph Laplacian, and directly compute the bounds of homogeneous
solutions. Using this method, we present analytic results for the generalized Kuramoto model. More
specifically, we give a few sufficient conditions for initial configurations leading to the exponential decay
toward the completely synchronized states. Our sufficient conditions and decay rate depend on the
coupling strength, the initial phase and natural frequency configurations, and the graph Laplacian, but the
conditions are independent of the system size. Moreover, we estimate the time evolution of deviations
for the phase and frequency, and show that the smallest and largest positive eigenvalues for the graph
Laplacian affect the stability region and convergence rate for the synchronized states. Finally, we compare
our analytic results with numerical simulations using a few examples.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Synchronization is a key concept to the understanding of self-
organization phenomena occurring in coupled oscillators of the
dissipative type. This subject is observed in many natural, social,
physical and biological systems, and has been found to have ap-
plications to a variety of fields. Especially, the collective behavior
of limit-cycle oscillators appears in various biological phenomena
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such as flash of fireflies, chorus of crickets, synchronous firing of a
cardiac pacemaker, and unification of brain signals (see [1–4]). As
a result, the subject of synchronization is continuously calling for
serious and systematic investigation, and has evolved as an inde-
pendent field of scientific research.

In a mathematical point of view, the collective behavior of os-
cillators was pioneered by Winfree and Kuramoto [5–8] who took
advantage of a simple kinetic theory on phase evolution. Since
then, the dramatically increasing interests in synchronization have
been pervading the study of nonlinear dynamical systems [9–12].
Among various models for synchronization phenomena, our main
concern is theKuramotomodelwhich is a simplemean-fieldmodel
of coupled oscillators with spatially local and sinusoidal coupling
[1,13].
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The Kuramoto model consists of a population of N oscillators
for which dynamics is governed by the following equations:

θ̇i = ωi + K
N
j=1

aij sin(θj − θi), i = 1, . . . ,N,

where θi is the phase of ith oscillator, ωi is its natural frequency,
K > 0 is the coupling strength between pairs of connected oscilla-
tors and aij is the element of the coupling matrix. In particular, the
traditional Kuramoto model is recovered by letting aij = 1/N for
all i ≠ j (all-to-all coupling).

There are two main perspectives to research the Kuramoto
model. One is the synchronization phenomena of phases or fre-
quencies with respect to time. The other is stability which is a lo-
cal property of the vicinity of the synchronized solution. For the
identical or non-identical Kuramoto oscillators with all-to-all cou-
pling, synchronization estimates have been extensively studied
analytically and numerically. Especially, Ermentrout [14] found a
critical ratio between coupling strength and variance of natural fre-
quencies for which oscillators become phase-locked regardless of
the number of oscillators. The stability of phase-locking state was
established by van Hemmen and Wreszinski [15] for the strong
coupling using the Lyapunov functional approach, and Jadbabaie
et al. [16] also considered the stability analysis for coupled non-
linear oscillators with arbitrary connectivity and derived a com-
putable bound for the critical coupling constant using the spectral
graph theory. Recently, Ha et al. [17] found a necessary condition
for initial phase configurations that the complete frequency syn-
chronization occurs exponentially fast.

In this paper, we consider the generalized Kuramoto model as
follows:

θ̇i = ωi + K
N
j=1

Lij
di

sin(θj − θi), i = 1, . . . ,N,

where Lij are the elements of the connectivity matrix and di are the
degree of ith oscillator. We say that Lij/di is a weighted coupling.
This form has been used to solve the paradox of heterogeneity
that the heterogeneity in the degree distribution may suppress
synchronization in networks of oscillators coupled symmetrically
with uniform coupling strength (for details, see [18] and the
references therein). Especially, Motter et al. [18] referred to the
stability of the completely (or fully) synchronized state of this
model.

The traditional Kuramoto system is governed by nonlinear
equations. However it is based on a complete graph and used to lin-
earize around synchronized states. These are advantages to analyt-
ical studies for the complete synchronization. On the other hand, a
generalized Kuramotomodel is given by arbitrarily connected net-
works (graph Laplacian) such as our case. Kalloniatis [19] studies
the synchronization properties of the Kuramoto model of coupled
phase oscillators on a general network. To show these, he used per-
turbation methods and the properties of eigenvalues for the graph
Laplacian. In [20], to study synchronization of large interacting sys-
tems, Jost and Joy used the spectrum of the graph Laplacian and its
relation to the stability properties of the spatially homogeneous so-
lutions using linear stability analysis. Atay and Karabacak [21] pre-
sented a role of the largest eigenvalue to study the stability analysis
of networks, both with and without time delays. In [22], Hagberg
and Schult introduced that rewiring based on spectral properties
of the graph Laplacian is effective at enabling synchronization.

In the above results, the main idea is a linearization of homoge-
neous solutions by using the spectral properties of the graph Lapla-
cian, and then applying perturbationmethods. One of the novelties
of this paper is to perform a theoretic analysis for the asymptotic

complete synchronization of the finite oscillators with arbitrary
connectivitywithout any linearization procedure and perturbation
method. Specifically, we provide sufficient conditions concerned
with initial configurations and conductivity of oscillators, and
show that the asymptotic complete synchronization is strongly af-
fected by the graph structure and initial configurations. To prove
these, our main strategy is to employ graph theory and derive dif-
ferential inequalities for the weighted standard deviations of the
phase and frequency configurations. Finally, we compute explicitly
that the general Kuramoto oscillators exponentially decay to the
completely synchronized estimates and the decay rate is bounded
by the smallest and largest positive eigenvalues for the graph
Laplacian, andwe confirm these phenomena using a few examples.

The rest of this paper is divided into four sections after this in-
troduction. In Section 2, we describe the generalized Kuramoto
model, and present prior results on connectivity matrix. In Sec-
tion 3, we prove that a complete phase and frequency synchro-
nization for Kuramoto’s oscillators occur exponentially fast. In
Section 4, we present several numerical simulation results, and
compare them with the analytical results in Section 3. Finally Sec-
tion 5 is devoted to the summary of main results.

2. Preliminaries

In this section, we briefly introduce the general Kuramoto
model, and obtain its equivalence equation and a few properties
of eigenvalues for the graph Laplacian.

2.1. Model description

In the most popular version of the Kuramoto model, each of
the oscillators θi is considered to have its own intrinsic natural
frequency ωi, and each is coupled equally to the other oscillators.
On the other hand, our concern is to investigate the dynamics of
oscillators in the case that the Kuramoto model has a weighted
interaction factor. The general Kuramoto model has the following
governing equations:

dθi
dt

= ωi + K
N
j=1

Lij
di

sin(θj − θi), (1)

where K is the coupling strength, Lij are the elements of the
connectivitymatrix and di is the degree of the oscillator θi, namely,

Lij = Lji =


1, if i ∼ j,
0, if not

where the symbol ‘‘∼’’ means that θi and θj are adjacent and di =
j Lij. Note that the general Kuramoto model has real analytic

solution (see Hale’s book [23] for details).
We finally show the complete phase and frequency synchro-

nization of the general Kuramoto model as follows:

Definition 2.1. Let {θi}
N
i=1 be the solutions to the system (1).

(i) The system {θi}
N
i=1 has asymptotic complete phase synchro-

nization if and only if the following condition holds.

lim
t→∞

|θi(t) − θj(t)| = 0, i, j = 1, . . . ,N.

(ii) The system {θi}
N
i=1 has asymptotic complete frequency syn-

chronization if and only if the following condition holds.

lim
t→∞

|θ ′

i (t) − θ ′

j (t)| = 0, i, j = 1, . . . ,N.
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