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h i g h l i g h t s

• We demonstrate the existence of twistless tori in the planar circular restricted three-body problem.
• The associated reconnection bifurcations and meandering curves are found.
• The Birkhoff normal form at the Lagrangian triangular equilibrium is calculated to eighth order.
• Numerically integrated Poincare sections agree well with predictions made from the truncated integrable normal form.
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a b s t r a c t

This paper demonstrates the existence of twistless tori and the associated reconnection bifurcations and
meandering curves in the planar circular restricted three-body problem. Near the Lagrangian equilibrium
L4 a twistless torus is created near the tripling bifurcation of the short period family. Decreasing themass
ratio leads to twistless bifurcations which are particularly prominent for rotation numbers 3/10 and 2/7.
This scenario is studied by numerically integrating the regularised Hamiltonian flow, and finding rotation
numbers of invariant curves in a two-dimensional Poincaré map.

To corroborate the numerical results the Birkhoff normal form at L4 is calculated to eighth order.
Truncating at this order gives an integrable system, and the rotation numbers obtained from the Birkhoff
normal form agree well with the numerical results. A global overview for the mass ratio µ ∈ (µ4, µ3) is
presented by showing lines of constant energy and constant rotation number in action space.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The planar circular restricted three-body problem (PCR3BP) de-
scribes the dynamics of a body of negligible mass (the test particle)
travelling in the gravitational field of two bodies with masses m1
andm2 (the primaries). The primaries are assumed to have circular
orbits, and all three bodies are restricted to a single plane. In the
rotating frame of reference with the primaries fixed, there are five
equilibria for the test particle, known as the Lagrange points. In par-
ticularwe are concernedwith the triangular Lagrange equilibriaL4
andL5 (which occur at the third point of equilateral triangles with
the primaries). In celestial mechanics bodies whose orbit remains
close to these Lagrange points are called Trojans, in particular in
the Sun–Jupiter system. It is well-known (see for example [1]) that
if µ =

m2
m1+m2

≤ µ1 = 0.5(1 −
√
69/9) ≈ 0.0385, then L4 and

L5 are elliptic; for all parameter values considered in this paper,
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this condition is met. The monographs [2,3] contain a wealth of in-
formation on the problem. Here we are interested in invariant tori
and their bifurcations nearL4. The dynamics nearL4 has also been
studied extensively; see, e.g., [4–7].

At the triangular Lagrange equilibria for µ < µ1 the linearised
Hamiltonian has two pairs of pure imaginary eigenvalues ±iωs
and ±iωl (corresponding to the short and long period families
respectively). Themass ratioµ forwhichωs/ωl = r > 1 is denoted
by µr ; see, e.g., [1]. According to the Lyapunov centre theorem,
see, e.g., [1], the short period family always exists for µ < µ1
and has period 2π/ωs when approaching the origin. When r is
not an integer then for µ = µr the long period family exists and
has period 2π/ωl when approaching the origin. For the range we
are considering here µ ∈ (µ3, µ4) both the long and the short
family exist. This range includes µ = 0.01215 for the Earth–Moon
system. See Table 1 for some relevant values of µr .

The computation of the Birkhoff normal form at L4 was first
performedbyDeprit andDeprit-Bartholomé in 1967 [8] up to order
4 (degree 2 in actions). They found the special value µc ≈ 0.0109
for which the iso-energetic non-degeneracy condition of the KAM
theorem does not hold at L4, and hence potentially stability could
have been lost since the Hamiltonian is not definite at L4. Meyer
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Table 1
µr for rational values of r between the 1/4 and 1/3 resonances, to five decimal places. µc is the value where the twist vanishes at L4 . Rotation number 5/16 approximately
occurs for the Earth–Moon system.

r 4 11
3

7
2 c 10

3 ≈
16
5 3

µr 0.00827 0.00964 0.01045 0.01091 0.01135 0.01215 0.01351

and Schmidt in 1986 [9] pushed the computation to order 6 using
computer algebra. With these results they established the stability
of L4 by KAM theory for all parameters in the elliptic range µ <
µ1, except at lowest order resonancesµ2 andµ3, but includingµc .

The vanishing of twist at the equilibrium point is not only
a threat to KAM stability, but also signals the creation of a
twistless torus nearby. Standard iso-energetic KAM theory fails
near a twistless torus. There are KAM theorems with weaker non-
degeneracy assumptions that fix this problem [10]. But in any
case, the passage of the twistless torus through a rational rotation
number under variation of a parameter (e.g. the energy) gives rise
to twistless bifurcations. Such bifurcations have first been studied
in area preservingmaps byHoward [11,12], and a normal formwas
derived in [13]. Results on break-up of twistless curve and a review
of the literature can be found in [14].

To analyse twistless bifurcations in an integrable or near-
integrablemap themost useful presentation of the dynamics of the
map is in the form of (approximate) action-angle variables (I, θ),
so that the unperturbed dynamics is I ′ = I and θ ′

= θ + W (I). At
a twistless torus I = I∗ by definition the rotation number W has
a critical point, W ′(I∗) = 0. When the critical value W (I∗) passes
through a rational value for a typically perturbed map a twistless
bifurcation occurs. The paper [15] on generic twistless bifurcations
demonstrates that for a family ofmapswith a fixed pointwith rota-
tion numbers in [1/6, 1/2] the twist of the fixed point must vanish
for some W ≠ 1/3. The vanishing twist at the origin corresponds
to a critical point ofW at the origin, i.e.W ′(0) = 0.When the criti-
cal point ofW moves to positive I under variation of a parameter a
twistless curve is created. Another source of a twistless curve may
be a saddle-centre bifurcation, as shown in [16], where the uni-
versal features of this bifurcation were also studied. For example,
in the area preserving Hénon map a twistless curve is created in a
saddle-centre bifurcation of a period three orbit near a fixed point
with rotation number 1/3 [16].

Twistless bifurcations shown to be generic in 1-parameter
families of area preserving maps [15] naturally also appear in
Hamiltonian flows, simply because a Poincaré section of the flow
at fixed energy gives a 2-dimensional area preserving map. Thus
we should expect to see twistless bifurcations in a Hamiltonian
flow, since the energy E may serve as the family parameter. So
it is not a surprise to find twistless bifurcations in the restricted
problem along 1-dimensional lines in parameter space of E and
µ. Looking for twistless bifurcations, however, is a bit like looking
for a needle in a haystack, since they often occur in very small
regions in parameter space. Simó and Stuchi [17] were the first
to demonstrate the existence of meandering twistless curves in
Hill’s problem, a variant of the PCR3BPwhere the distance between
the two primaries is made infinite. The existence of twistless
bifurcations in Hill’s problem certainly implies the existence of
such bifurcations in the PCR3BP. In the present work we show
that twistless bifurcations occur not only near Hill’s orbits, but also
near the Lagrangian equilateral equilibrium point L4, where the
approximation for Hill’s problem is not valid.

The structure of the paper is as follows. The Hamiltonian and
its regularisation is reviewed in the next section. In Section 3 we
present numerically computed Poincaré sections and the corre-
sponding numerically computed W curves. Our numerically com-
puted results show that there are prominent twistless bifurcations
for W = 3/10 and W = 2/7 along one-parameter families in

(E, µ) space. These occur in the island of stability in the Poincaré
section that has the short period orbit at its centre. The line of twist-
less bifurcations in parameter space traces closely the lines where
the short period orbit has rotation number 3/10 and 2/7, respec-
tively. Then we show that the numerical results can be analytically
explained using a high order non-resonant Birkhoff normal form
at the equilibrium L4. The presence of an equilibrium point is a
feature of the flow that cannot be present in a family of maps. It
serves as an anchor for the computation of an analytic approxima-
tion from which an approximation to W (I) can be found. The nor-
mal form reveals the full complexity of the bifurcations of invariant
tori around the short period family forµ ∈ (µ4, µ3) in the PCR3BP.

2. The planar circular restricted three-body problem

We construct the Hamiltonian describing the dynamics of the
test particle as in [18]:

H (x, y, px, py) =
1
2
p2x +

1
2
p2y + pxy − py


x + µ −

1
2


−

1 − µ

r1
−

µ

r2
+ s, (1)

r1 =


x +

1
2

2

+ y2, r2 =


x −

1
2

2

+ y2,

s =
3 + µ(µ − 1)

2
.

(2)

The Hamiltonians are normalised by s so that the energy of a
stationary test particle at L4 is E = 0. The Hamiltonian has been
scaled so the total mass of the primaries is 1 unit, and the distance
between the primaries is also 1 unit. We take a rotating frame
of reference, with the primaries fixed; the primary of mass µ at
(−1/2, 0) and 1 − µ at (+1/2, 0) for µ ∈ (0, 1/2], themass ratio.
The other parameter of the system is E = H , the constant value
of the Hamiltonian. Our E is related to the usual Jacobi integral
C = −2(E − s).

We then introduce complex coordinates z = x + iy ∈ C, pz =

px − ipy ∈ C. Now the transformed Hamiltonian is

H (z, pz) =
1
2
|pz |2 + Im


(z +

1
2

− µ)pz


−

1 − µz +
1
2

 −
µz −

1
2

 + s. (3)

To regularise and remove the singularities at z = ±1/2,we take
the Thiele transformation as described in [19–21]:

z =
1
2
cosw, pz =

−2pw

sinw
. (4)

The new Hamiltonian is

H (w, pw) = 2
 pw

sinw

2 − Im

(cosw + 1 − 2µ)

pw

sinw


−

2 − 2µ
| cosw + 1|

−
2µ

| cosw − 1|
+ s. (5)

Our final step is to take the Hamiltonian into extended phase
space with time t and the fixed energy E = H (w, pw) now
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