Homogeneous Einstein metrics on $S U(n)$

A.H. Mujtaba
George and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, Texas A\&M University, College Station, TX 77843, USA

ARTICLE INFO

Article history:

Received 17 October 2011
Accepted 26 January 2012
Available online 2 February 2012

Keywords:

Einstein metrics
SU(n)
Lie algebras
Manifolds

Abstract

It is known that every compact simple Lie group admits a bi-invariant homogeneous Einstein metric. In this paper we use two ansatz to probe the existence of additional inequivalent Einstein metrics on the Lie group $S U(n)$ for arbitrary n. We provide an explicit construction of $(2 k+1)$ inequivalent Einstein metrics on $S U(2 k)$ and $2 k$ inequivalent Einstein metrics on $S U(2 k+1)$.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

The Einstein equation $R_{\mu \nu}=\lambda g_{\mu \nu}$, which defines an Einstein metric, constrains the Ricci and through it the Riemann curvature tensor. In general in d dimensions the Ricci tensor has $\frac{1}{2} d(d+1)$ algebraically independent components while the Riemann Curvature Tensor has $\frac{1}{12} d^{2}\left(d^{2}-1\right)$ algebraically independent components [1]. So as d increases fewer constraints are placed on the curvature of the metric. In fact for $d \geq 4$ the number of independent components of the Ricci tensor is less than that of the Riemann tensor and the gap widens as d increases.

These considerations lead one to expect that as the number of dimensions d increases the number of (inequivalent) Einstein metrics should also increase [2]. In this paper we search for some of these increasing number of Einstein metrics on $S U(n)$ group manifolds.

The number of independent components of an $n \times n$ unitary matrix with unit-determinant are $n^{2}-1$ which means that the Lie group $S U(n)$ and its associated manifold has dimension $d=n^{2}-1$. Consequently the number of possible Einstein metrics on the $S U(n)$ group manifold increases rapidly with increasing n.

1.1. Construction of metrics

We choose to work with the vielbiens σ_{a} (1-forms) coupled with a metric $g_{a b}$ (with constant components that do not vary with the parameters of the Lie-Algebra) [3]. Given a Lie group G with generators T_{a}, if $g \in G$ then the left-invariant 1-forms σ^{a} are given by

$$
\begin{equation*}
g^{-1} d g=\sigma^{a} T_{a} \tag{1.1}
\end{equation*}
$$

The general metric on the group manifold written in terms of the 1 -forms is [3]

$$
\begin{equation*}
d s^{2}=g_{a b} \sigma^{a} \sigma^{b} \tag{1.2}
\end{equation*}
$$

With the 1 -forms σ^{a} defined, our task is to find metrics $g_{a b}$ such that the metric $d s^{2}$ (as defined in (1.2)) is Einstein.

[^0]
1.2. Additional Einstein metrics

Every simply compact Lie group admits a bi-invariant metric of the form $\operatorname{tr}\left(g^{-1} d g\right)^{2}$ which in a suitable choice of basis for the generators T_{a} can be expressed as

$$
\begin{equation*}
d s^{2}=c \sigma^{a} \sigma_{a} \tag{1.3}
\end{equation*}
$$

where c is a constant [2]. This corresponds to $g_{a b}=c \delta_{a b}$.
D'Atri and Ziller [4] have shown that every simple compact Lie group, with the exception of $S U(2)$ and $S O$ (3), admits at least one additional homogeneous Einstein metric. These additional Einstein metrics, though not bi-invariant, are still invariant under the transitive G action (we have chosen to preserve the full G_{L}) [2].

In particular cases, homogeneous Einstein metrics have been shown to exist in addition to the bi-invariant and D'Atri and Ziller cases. Six inequivalent homogeneous Einstein metrics have been found explicitly for the exceptional group G_{2} [5]; $(3 k-4)$ and $(3 k-3)$ inequivalent Einstein metrics on $S O(2 k)$ and $S O(2 k+1)$ respectively [2], and a considerable body of work in part concerning Einstein metrics on $S O(n), S p(n)[6-10]$. These successes motivate the search for additional inequivalent Einstein metrics on $S U(n)$.

1.3. Inequivalence of Einstein metrics

When searching for new Einstein metrics one must determine whether a newly found candidate is truly "new" or if it is equivalent to an already known metric, possibly by a change of basis. A standard technique for evaluating this possibility is to calculate some dimensionless invariant quantity which is constructed from the metric and its curvature. We choose to use [2,5]:

$$
\begin{equation*}
I_{1}=R_{a b c d} R^{a b c d} \lambda^{-2}=\mid \text { Riem }\left.\right|^{2} \lambda^{-2} \tag{1.4}
\end{equation*}
$$

where $R_{a b}=\lambda g_{a b}$.
For any two Einstein metrics one calculates the value of the invariant. If the calculated values are unequal then the two Einstein metrics are clearly inequivalent. If the calculated values are equal the two metrics are likely equivalent but more investigation is required to prove it conclusively [5].

2. Metrics on $S U(n)$

We choose to construct and manipulate the metrics on $S U(n)$ using the left-invariant 1-forms $L_{A}{ }^{B}$ where $1 \leq A \leq n$. These have the property $L_{A}{ }^{B \dagger}=L_{B}{ }^{A}$ and obey the algebra [5]

$$
\begin{equation*}
d L_{A}^{B}=i L_{A}^{C} \wedge L_{C}{ }^{B} . \tag{2.1}
\end{equation*}
$$

The total number of possible metrics is large given the freedom to construct the 1 -forms σ^{a} (from the $L_{A}{ }^{B}$) as well as the metric $g_{a b}$. In our search for Einstein metrics on $S U(n)$ we choose to study certain classes of ansatz. These take the form of schemes for the construction of Hermitian traceless 1-forms from the $L_{A}{ }^{B}$ as well as particular choices for the metric $g_{a b}$.

2.1. Scheme 1

2.1.1. The generators

The scheme consists of the construction of $n^{2}-1$ traceless Hermitian 1-forms K_{i} from the $L_{A}{ }^{B}$. Let $m \equiv n(n-1) / 2$. We begin by constructing $n(n-1) / 2$ "traceless Hermitian" 1-forms of the form

$$
\begin{equation*}
K_{i}=L_{A}^{B}+L_{B}^{A} \tag{2.2}
\end{equation*}
$$

where $A \neq B$, for example $K_{1}=L_{1}{ }^{2}+L_{2}{ }^{1}$. The next $n(n-1) / 21$-forms will be taken to be

$$
\begin{equation*}
K_{m+i}=i\left(L_{A}{ }^{B}-L_{B}{ }^{A}\right) \tag{2.3}
\end{equation*}
$$

where $A \neq B$.
Since the 1 -forms K_{i} are obtained by taking linear combinations of the $L_{A}{ }^{B}$ one can describe the construction in the language of matrices. Let \vec{l} be the vector with entries $l_{i}=L_{i}{ }^{i}$ and \vec{k} have entries $k_{i}=K_{2 m+i}$ for $1 \leq i \leq n$ then ${ }^{1}$:

$$
\begin{equation*}
\vec{k}=\mathbf{P} \mathbf{Q} \vec{l} \tag{2.4}
\end{equation*}
$$

[^1]
https://daneshyari.com/en/article/1896231

Download Persian Version:

https://daneshyari.com/article/1896231

Daneshyari.com

[^0]: E-mail address: abid.naqvi83@gmail.com.
 0393-0440/\$ - see front matter © 2012 Elsevier B.V. All rights reserved.
 doi:10.1016/j.geomphys.2012.01.011

[^1]: 1 Note that the last K_{i} so defined is $K_{n^{2}}$ which is not a 1-form of $S U(n)$ and has non-zero trace to boot (it corresponds to the unit matrix, that is the generator of $\mathfrak{u}(1))$.

