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a b s t r a c t

We present two continuous symmetry reduction methods for reducing high-dimensional dissipative
flows to local returnmaps. In theHilbert polynomial basis approach, the equivariant dynamics is rewritten
in terms of invariant coordinates. In the method of moving frames (or method of slices) the state space
is sliced locally in such a way that each group orbit of symmetry-equivalent points is represented by a
single point. In either approach, numerical computations can be performed in the original state space
representation, and the solutions are then projected onto the symmetry-reduced state space. The two
methods are illustrated by reduction of the complex Lorenz system, a five-dimensional dissipative flow
with rotational symmetry. While the Hilbert polynomial basis approach appears unfeasible for high-
dimensional flows, symmetry reduction by the method of moving frames offers hope.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

In his seminal paper, Lorenz [1] reduced the continuous time
and discrete spatial symmetries of the three-dimensional Lorenz
equations, resulting in a one-dimensional return map that yields
deep insights [2] into the nature of chaos in this flow. For strongly
contracting, low-dimensional flows, Gilmore et al. [3,4] system-
atized construction of such discrete time return maps, through the
use of topological templates, Poincaré sections (to reduce the con-
tinuous time invariance) and invariant polynomial bases (to reduce
the spatial symmetries). They showed that in the presence of spa-
tial symmetries one has to ‘quotient’ the symmetry and replace the
dynamics by a physically equivalent reduced, desymmetrized flow,
in which each family of symmetry-related states is replaced by a
single representative. This approach leads to symbolic dynamics
and labeling of all periodic orbits up to a given topological period.
Periodic orbit theory can then yield accurate estimates of long-
time dynamical averages, such as Lyapunov exponents and escape
rates [5].

In a series of papers, Cvitanović et al. [6–11] showed that effec-
tively low-dimensional return maps can be constructed for high-
dimensional (formally infinite-dimensional) flows described by
dissipative partial differential equations (PDEs) such as the Ku-
ramoto–Sivashinsky equation (KS). Such flows have state space
topology vastlymore complicated than the Lorenz flow, and collec-
tions of local Poincaré sections together with maps from a section
to a section are required to capture all of the important asymp-
totic dynamics. These KS studies were facilitated by a restriction
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to the flow-invariant subspace of odd solutions, but at a price:
elimination of the translational symmetry of the KS system and
with it physically important phenomena, such as traveling waves.
Traveling (or relative) unstable coherent solutions are ubiquitous
and play a key role in the organization of turbulent hydrodynamic
flows, as pointed out already in 1982 by Rand [12], and confirmed
by both simulations and experimentation [13–18]. For KS [19,20],
and even for a relatively low-dimensional flow such as the com-
plex Lorenz equations [21,22] used as an example here, with the
simplest possible continuous (rotational) spatial symmetry, the
symmetry-induced drifts obscure the underlying hyperbolic dy-
namics.

The question that we address here is that of how one can con-
struct suitable return maps for arbitrarily high-dimensional but
strongly dissipative flows in the presence of continuous symme-
tries. Our exposition is based in part on Refs. [5,20,23]. The reader
is referred to [24–28] for more depth and rigor than would be wise
to wade into here.

In Section 2 we review the basic notions of symmetry in dy-
namics. Section 2.1 introduces the SO(2)-equivariant complex
Lorenz equations (CLE), a five-dimensional set of ODEs that we use
throughout the paper to illustrate the strengths and drawbacks of
different symmetry reduction methods. In Section 3 we describe
important classes of solutions and their symmetries: equilibria, rel-
ative equilibria, periodic and relative periodic orbits, and use them
to motivate the need for symmetry reduction.

In Section 4we describe the problemof symmetry reduction. The
action of a symmetry group endows the state space with the struc-
ture of a union of group orbits, each group orbit an equivalence
class. The goal of symmetry reduction is to replace each group or-
bit by a unique point in a lower-dimensional reduced state space. In
Section 5 we briefly review the standard approach to spatial sym-
metry reduction, projection to a Hilbert basis, and explain why we
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find it impracticable. In Section 6 we review the method of mov-
ing frames, a direct and efficientmethod for computing symmetry-
invariant bases that goes back to Cartan, and in Section 6.1 we
apply the method to the complex Lorenz equations. The method
maps all solutions to a slice, a submanifold of state space that plays
a role for group orbits akin to the role that Poincaré sections play in
reducing continuous time invariance. In contrast to the Hilbert ba-
sis approach, slices are local, with a generic trajectorywithin a slice
bound to encounter singularities, andmore than one slicemight be
needed to capture the flow globally. In Section 6.2 we show that a
single local slice can suffice for the purpose of reducing the com-
plex Lorenz equations flow to a return map. In Section 7 we re-
cast the method of moving frames into the equivalent, differential
method of slices, with time integration restricted to a slice fixed by
a given state space point.

2. Symmetries of dynamical systems

Here we are interested in the role continuous symmetries play
in dynamics. The methods that we develop are in principle ap-
plicable to translational and rotational symmetries of ODEs and
PDEs, described by compact or non-compact Lie groups. We have
in mind applications to PDEs such as Kuramoto–Sivashinsky and
plane Couette flow which exhibit translational symmetries in ei-
ther infinite or periodic domains. In the former case the group of
symmetries is Euclidean and non-compact, and in the latter case
it is orthogonal and compact. In numerical computations the pe-
riodic setting is usually considered and, through Fourier analysis,
a translation is represented by the action of the one-parameter
Lie SO(2) group on its linearly irreducible subspaces, the Fourier
modes. Through truncation (for example spectral discretization),
PDEs are transformed to high-dimensional, but finite-dimensional,
systems of ODEs. The key conceptswill thus be illustrated by a spe-
cific ODE example, the SO(2) group acting on a five-dimensional
state space, linearly decomposable into a direct sum of irreducible
subspaces of SO(2).

Consider a system of ODEs of the form

ẋ = v(x) (1)

with v a smooth vector field and x ∈ M ⊂ Rd.
A linear action g is a symmetry of (1) if

v(gx) = g v(x) (2)

for allM. One says that v commuteswith g or that v is g-equivariant.
When v commutes with the set of group elements g ∈ G, the
vector field v is said to be G-equivariant. The group G is said to be a
symmetry of the dynamics if for every solution x(τ ) = f τ (x), g x(τ )
is also a solution. The finite-time flow f τ (gx) through gx then
satisfies the equivariance condition:

f τ (gx) = gf τ (x). (3)

In physics literature the term invariant is most commonly used;
for example, in Hamiltonian systems a symmetry is manifested as
invariance of the Hamiltonian under the symmetry group action.

An element of a compact Lie group continuously connected to
the identity can be written as

g(θ) = eθ ·T, θ · T =

−
θaTa, a = 1, 2, . . . ,N, (4)

where θ · T is a Lie algebra element, and θa are the parameters
of the transformation. Repeated indices are summed throughout
this section, and the dot product refers to a sum over Lie algebra
generators. The Euclidean product of two vectors x, y is indicated
by x-transpose times y, i.e., xTy =

∑d
i xiyi. Finite transformations

exp(θ · T) are generated by sequences of infinitesimal steps of the
form

g(δθ) ≃ 1 + δθ · T, δθ ∈ RN , |δθ | ≪ 1, (5)

where Ta, the generators of infinitesimal transformations, are a
set of N linearly independent [d × d] anti-hermitian matrices,
(Ta)

Ď
= −Ta, acting linearly on the d-dimensional state space M.

For G ⊂ O(n) the generators can always be brought to the real,
antisymmetric form TT

= −T. The flow induced by the action of
the group on the state space point x is given by the set of N tangent
fields

ta(x)i = (Ta)ijxj. (6)

These tangent fields are always normal to the ‘radial’ vector x,

xT ta(x) = 0. (7)

For an infinitesimal transformation (5) the G-equivariance
condition (2) becomes

v(x) ≃ (1 − θ · T) v(x + θ · T x) = v(x) − θ · T v(x) +
dv
dx

θ · T x.

Thus the infinitesimal, Lie algebra G-equivariance condition is

ta(v) − A(x) ta(x) = 0, (8)

where A = ∂v/∂x is the stability matrix. The left-hand side,

Ltav =


Ta −

∂

∂y
(Tax)


v(y)


y=x

, (9)

is knownas the Lie derivative of the dynamical flow field v along the
direction of the infinitesimal group-rotation-induced flow ta(x) =

Tax. The equivariance condition (8) states that the two flows, one
induced by the dynamical vector field v and the other by the group
tangent field t , commute if their Lie derivatives (or the Lie brackets
or Poisson brackets) vanish.

Any representation of a compact Lie group G is fully reducible,
and invariant tensors constructed by contractions of Ta are useful
for identifying irreducible representations. The simplest such in-
variant is bilinear,

TT
· T =

−
α

C (α)
2 1(α), (10)

where C (α)
2 is the quadratic Casimir for the irreducible represen-

tation labeled α, and 1(α) is the identity on the α-irreducible sub-
space, 0 elsewhere. The dot product of two tangent fields is thus a
sum weighted by Casimirs,

t(x)T · t(x′) =

−
α

C (α)
2 xi δ

(α)
ij x′

j. (11)

If x is not invariant (fixed under group actions), t(x)T ·t(x) is strictly
positive. t(x)T · t(x′), however, can take either sign, or even vanish.

2.1. An example: complex Lorenz equations

Consider a complex generalization of Lorenz equations,

ẋ = −σ x + σy, ẏ = (ρ − z)x − ay

ż = (xy∗
+ x∗y)/2 − bz, (12)

where x, y are complex variables, z is real, while the parameters
σ , b are real and ρ = ρ1 + iρ2, a = 1 − ie are complex. Recast in
real variables, x = x1+ ix2, y = y1+ iy2, this is a set of five coupled
ODEs:

ẋ1 = −σ x1 + σy1, ẋ2 = −σ x2 + σy2
ẏ1 = (ρ1 − z)x1 − ρ2x2 − y1 − ey2
ẏ2 = ρ2x1 + (ρ1 − z)x2 + ey1 − y2
ż = −bz + x1y1 + x2y2. (13)
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