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h i g h l i g h t s

• The motion of particles in a channel with periodic corrugations is analyzed.
• Some particles focus towards an attracting streamline due to their inertia.
• Little is known about the exact conditions under which this phenomenon occurs.
• We present an asymptotic description of this problem, and solve it.
• These analytical results are confirmed by numerical simulations.
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a b s t r a c t

The motion of tiny non-Brownian inertial particles in a two-dimensional channel flow with periodic
corrugations is investigated analytically, to determine the trapping rate as well as the exact position of
the attractor, and understand the conditions under which particle trapping and long-term suspension
occur. This phenomenon has been observed numerically in previous works and happens under the
combined effects of confinement and inertia. Starting from the particle motion equations, a Poincaré
map is constructed analytically in the limit of weak inertia and weak channel corrugations. It enables
to derive the equation of the attractor, if any, and the corresponding trapping rate. The attractor is
close to a streamline, the so-called ‘‘attracting streamline’’, and is shown to persist in the presence of
transverse gravity, provided the channel Froude number is large enough. Particles which are trapped
by this streamline can therefore travel over long distances, avoiding deposition. Numerical simulations
confirm the theoretical results at small particle response times τ and reveal some non-linear effects
at larger τ : the asymptotic attractor becomes unstable at some critical value and splits into multiple
branches each with its own basin of attraction.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Small inertial non-Brownian particles (like aerosols, dust, sed-
iments or droplets) carried by a spatially-periodic incompressible
flow are often observed to focus towards some preferential trajec-
tories (see for example Maxey [1], Maxey and Corrsin [2], Fernan-
dez de La Mora [3], Robinson [4] to name but a few). In terms of
dynamical systems, this phenomenon is due to the fact that, un-
der the effect of their inertia, particles have a dissipative dynamics
within a bounded phase space, and eventually converge to some
attractor with zero volume. The dynamics of inertial particles is
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therefore very different from the one of pure tracers since the lat-
ter have non-dissipative dynamics in volume-preserving flows. In
particular, the existence of an attractor significantly affects colli-
sions and aggregation phenomena (for a review see for example
Cartwright et al. [5]). These features, and more generally the fact
that inertial particles do not follow fluid points, have been ob-
served numerically and experimentally in both laminar and tur-
bulent flows in the past decades (Squire and Eaton [6], Maxey [1],
Maxey and Corrsin [2], Haller and Sapsis [7], Qureshi et al. [8], Ijz-
ermans et al. [9], Wilkinson andMehlig [10], Wilkinson et al. [11]).
Recent developments in inertial microfluidics (see for example Di
Carlo [12]) have also revived an interest in particle focusing and
separation in confined flows. However, inmicrofluidic applications
focusing is usually attributed to the transverse (lift) force due to the
proper inertia of the fluid rather than that of the inclusion, which
brings them out of the scope of this paper.

In this paper, we study the influence of inertial focusing on
particle transport in a two-dimensional smooth channel with
corrugated walls. This flow is of great interest in geoscience,
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as it can be used to model sediment transport in fractures or
mineral separation devices. Wall corrugation imposes curved fluid
streamlines inside the channel, and it has been shown numerically
that this can cause some particles to focus towards some
preferential trajectory or ‘‘attracting streamline’’ (Dahneke [13],
Fernandez de la Mora [3]) located somewhere between the two
walls. Such particles are sometime referred to as ‘‘trapped’’, since
they are forced tomove along awell-defined trajectory and cannot
escape it. As will be shown below, this phenomenon persists
in the presence of gravity, and this can significantly change
particle transport properties in channels: particles traveling on
the attracting streamline, avoiding sedimentation, can travel over
long distanceswhereas other particleswill be eventually deposited
on the walls. In most analyses dealing with this phenomenon,
a complete analytical description of the attractor is missing, the
exact position of the attracting streamline is unknown, and a
general bifurcation diagram (indicating under which conditions
trapping occurs) is not available. The present paper fills this
gap by means of a rigorous asymptotic approach. Indeed, the
complex behavior of particle dynamics in fractures results from
the combined effect of the fracture shape, particle inertia, and
of the various hydrodynamic forces. All these effects contribute
to the final focusing rate, and an analytical treatment, like the
one presented here, is the only way to deeply understand the
relative contribution of these various physical mechanisms. The
goal of this paper is therefore to find, as analytically as possible,
the explicit conditions for the existence of an attracting streamline
in a corrugated channel, and to obtain a complete trapping
diagram in terms of flow rate, gravity and channel geometry. In
addition, relevant and numerically costly statistical quantities, like
deposition lengths or percentage of deposited particles, will also
be calculated. Because the inertia of the fluid and wall effects will
be neglected in this work, we do not expect our results tomatch all
realistic situations, but the model will help us to understand some
key features of inertial particle focusing.

In the following sections (except in Section 6.3), the influence
of inertia on the particle motion will be assumed to be weak
so that, in the long term, particle velocities will be obtained by
using a perturbation of the fluid velocity field. The inertia of the
fluid flowing through the channel will also be neglected, and
we will use the LCL (Local Cubic Law) flow model [14]. Under
these assumptions we study the migration of particles across a
periodic corrugated channel (Section 3), and construct the Poincaré
map of particle positions at the end of each corrugation period.
The use of this map reduces the problem to the calculation of
a migration function f (η), which contains all information about
the long-term behavior of inertial particles. We then apply it to
the LCL flow and obtain the trapping diagram which predicts
focusing and sedimentation regimes depending on the Froude
number and on the channel geometry. Asymptotic estimates of the
focusing rate, the percentage of permanently suspended particles
and deposition lengths are also calculated. These analytical results
are then compared to numerical simulations in Section 6.

2. Particle motion equations and asymptotic expansion

We consider a fluid flow within a two-dimensional corrugated
channel (Fig. 1). The typical fluid velocity is U0 and the scale of
corrugations is denoted as L0. The typical gap of the channel is
H0, and we set ε = H0/L0. The channel is taken to be horizontal,
being understood that the results presented in this paper can be
easily generalized to channels with an oblique direction. Particles
are taken to be much smaller than the gap of the channel, and are
assumed to move far from the wall. Their density is comparable
to that of the fluid. In addition, we assume that they are non-
Brownian, that they do not interact and do not modify the main

flow. By using U0 and L0 to non-dimensionalize the Maxey–Riley
equations (in the form derived by Maxey and Riley [15] with
corrected added mass [16]) we get:
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where v⃗p and u⃗f are the particle and fluid velocities respectively,
v⃗s = v⃗p − u⃗f (x⃗p) is the slip velocity at the particle position x⃗p.
Also, χL = a/L0 is the non-dimensional particle radius and R =

2/(2ρ + 1), where ρ is the particle to fluid density ratio. The non-
dimensional gravity vector is G⃗ = e⃗z/Fr, where Fr = U2

0/g L0 is
the Froude numbermeasuring inertia forces compared to the force
of gravity (g is the acceleration of gravity). The main parameter
measuring particle inertia is the non-dimensional response time
τ = St/R, where St is the particle Stokes number which can be
written as St =

2
9ReLχ

2
L with ReL = U0L0/ν. In terms of ε we also

have St =
2
9εReHχ

2
H , with χH = a/H0 being the particle size re-

lated to the mean gap of the channel. The motion equation takes
into account the following forces (in order of appearance): the drag,
the gravity and buoyancy forces, the pressure gradient of the un-
perturbed flow, the added mass force, and the Basset force.

The terms proportional to the Laplacian of the velocity field are
usually referred to as Faxen corrections [17] and are due to the
local non-uniformity of the fluid flow at the particle scale. They are
very often neglected under assumption that the particle size a is
small compared to the typical length scale of the flow L0. However,
even if these terms are small compared to the fluid velocity, they
can compete against the particle slip velocity, especially inweakly-
inertial regime. The integral term is due to the unsteadiness of the
disturbance flow due to the particle. In this work we will assume
this disturbance flow is quasi-steady, so that the Basset force will
be neglected.

When the particle response time is small (τ ≪ 1), the inclusion
quickly forgets its initial condition and, in the long term, its veloc-
ity does not deviate much from the one of a fluid point (weakly-
inertial regime). When τ ≫ 1 the particle motion is mostly
governed by gravity or other external forces (ballistic regime). In
the intermediate case τ = O(1) the particle dynamics can be very
complex. Becausewe consider particles that aremuch smaller than

the gap of the channel (χH ≪ 1), the response time τ =
2
9
(εReH )χ2

H
R

will always be small unless R ≪ 1 or εReH ≫ 1. In our study the
density ratio R will vary from R ≪ 1 (heavy particles) to R = 2/3
(neutrally buoyant particles) and R > 2/3 (particles lighter than
the fluid), but we assume that τ is small even for very heavy par-
ticles. Throughout the paper we focus on the asymptotic regime at
τ ≪ 1, except in Section 6.3 where finite response times will be
considered.

The motion equations (1) are singularly perturbed in the limit
τ → 0. Physically, this means that the system has two time scales:
the hydrodynamic time T0 = L0/U0 and the particle response
time τ T0. It is known [1,18] that, for small τ , solutions of this
equation will converge at an exponential rate exp(−t/τ) towards
the solutions of the following first-order equation:

˙⃗xp = v⃗τ (x⃗p),

v⃗τ (x⃗p) = u⃗f (x⃗p)+ τ v⃗1(x⃗p)+ τ 3/2v⃗3/2(x⃗p)+ O(τ 2),
(2)
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