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h i g h l i g h t s

• Study solitary wave solutions of 2-D nonlocal NLS modeling nematicons.
• Show existence and symmetry properties of ground state solitary waves.
• Show existence of power threshold for negative energy solitary waves.
• Show decay of small power initial conditions.
• Compare infinite plane theory with numerical solution in finite domain.
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a b s t r a c t

We study soliton solutions of a two-dimensional nonlocal NLS equation of Hartree-type with a Bessel
potential kernel. The equation models laser propagation in nematic liquid crystals. Motivated by the
experimental observation of spatially localized beams, see Conti et al. (2003), we showexistence, stability,
regularity, and radial symmetry of energy minimizing soliton solutions in R2. We also give theoretical
lower bounds for the L2-norm (power) of these solitons, and show that small L2-norm initial conditions
lead to decaying solutions. We also present numerical computations of radial soliton solutions. These
solutions exhibit the properties expected by the infinite plane theory, although we also see some finite
(computational) domain effects, especially solutions with arbitrarily small power.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

We study some basic properties of solitary waves in a nonlocal
nonlinear Schrödinger (NLS) equation modeling the propagation
of laser light in nematic liquid crystals. The model was proposed
by Conti, Peccianti, and Assanto [1], who also conducted experi-
ments and found stable optical solitons with a two-dimensional
transverse profile. Other physical systems modeled by this or re-
lated nonlocal NLS equations are discussed in [2]. The stabiliza-
tion of solitons and related lack of blow-up in the model is due to
the nonlocality of the nonlinear interaction, and was predicted by
earlier theoretical works, see [3,4]. More recent experiments ex-
amined this effect in other physical systems [5]. The regularizing
effect of the nonlocal nonlinearity makes the liquid crystal system
an interesting laboratory for studying two dimensional solitons,
and there is considerable recent experimental and theoreticalwork
on vortices [6,7], soliton interactions [8], multicolor solitons [9]
and other related coherent structures [10].
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In the present work we show the existence, regularity, and
radial symmetry of energy minimizing solitons and compute ra-
dial solitons numerically. We also give analytically lower bounds
for the L2-norm (power) of energy minimizing solitons of neg-
ative energy. These thresholds involve best constants for the
Gagliardo–Nirenberg and Hardy–Littlewood inequalities. It is pos-
sible that initial conditions with positive energy decay. While we
do not settle this issue here, we use a different line of reasoning to
show that initial conditions with sufficiently small L2-norm decay.

The original model of [1] couples a Schrödinger equation for
the evolution of the electric field amplitude to a nonlinear elliptic
equation for the director field. The time variable is physically
the distance along the optical axis. We here consider a common
simplification of this model that leads to an NLS equation with
a cubic Hartree-type nonlinearity on the plane, see [6,9]. The
kernel of the Hartree nonlinearity is the two-dimensional Bessel
potential (also known as amodified Bessel function). The particular
NLS equation in two dimensions was discussed earlier in [11]
where it was argued heuristically that it should have stable
solitons, in contrast to the well known situation for the standard
cubic NLS in two dimensions, where solitons are unstable and
solutions can blow-up in finite time, see [12]. Turitsyn [4] uses a
Gagliardo–Nirenberg inequality and energy conservation to argue
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that the H1-norm of the solutions should stay bounded for all
times. A simpler energy argument for bounded Hartree kernels
appears in [13,14]. A rigorous version of the energy argument is
also implicit in the work of Ginibre and Velo [3], see also [15], who
consider cubic Hartree nonlinearities with more general kernels
that include the one studied here.

Soliton solutions are obtained by minimizing the Hamiltonian
of the nonlocal NLS over H1 functions with fixed L2-norm (power).
The existence of minimizers is shown here by a concentration-
compactness argument. We note that P.L. Lions [16] considered
related quartic functionals with Hartree kernels. We further use
elliptic regularity and rearrangement inequalities to see that the
minimizer is a smooth radially symmetric decreasing function
(up to translation and global phase change). The existence of
constrained energy minimizers assumes that the L2-norm is above
a certain threshold, and we give two explicit lower bounds for
this threshold. The idea is to bound below a ratio involving the
quartic and quadratic parts of the energy, and the power. A similar
ratio appears in the work of Weinstein [12] on the cubic NLS on
the plane, although the present problem is closer to the situation
in the discrete NLS [17]. Our power threshold estimate here
involves best constants for the Gagliardo–Nirenberg inequality,
and we also note an alternative bound involving constants for the
Gagliardo–Nirenberg and Hardy–Littlewood inequalities.

We also include a fixed point argument in a space–time
Lebesgue space that shows that initial conditions with small
power decay. This proof uses the Strichartz estimates for the free
Schrödinger evolution, and is similar to the one of [18] for the cubic
power NLS on the plane. The decay argument gives a third bound
for the minimum L2-norm of H1 solitons. A similar combination of
absence of blow-up and decay for small solutions was also seen
in the discrete cubic NLS in the two dimensional integer lattice,
see [19].

We also present numerical computations of positive, decreasing
radial solitons. The numerical study uses a finite circular domain
with Dirichlet boundary conditions, and solitons are computed
using themethod of [20]. The numerical results are consistentwith
the existence of power threshold for negative energy solitons, but
we also observe soliton-like solutions of arbitrarily small L2-norm
and positive energy. The existence of these small solutions can
be explained by an abstract local bifurcation result, applied to the
finite domain problem and its discretizations. We thus expect that
only part of the calculated solution branch yields approximations
to solitons of the R problem. The transition to the ‘‘spurious’’ part
may involve collision with other solution branches, see [21] for
such a scenario in the discrete NLS. This problem is left for further
work.

The paper is organized as follows. In Section 2 we state our
main theoretical results for the planar (R2) problem. In Section 3
we review the main results used in the proofs. In Section 4 we
prove the existence, regularity, and symmetry properties of the
minimizing solitons. In Section 5 we prove the power threshold
and small amplitude decay theorems for the planar problem. In
Section 6 we present the numerical results, and interpret them
using the planar theory and a local bifurcation argument for the
finite domain problem. In Section 7we briefly discuss some further
problems.

2. Soliton solutions of the nematicon equation

We consider the single-color nematicon equation in R2

iut +
1
2
D∆u + 2Aθu = 0, (2.1)

−∆θ + m2θ =
A
ν
|u|2, (2.2)

with constants D, A, ν > 0, e.g. compare with [9]. The variable u
represents the electric field envelope amplitude of an optical beam
propagating through a nematic liquid crystal, while θ represents
the angle of the director field of the liquid crystal.

The inhomogeneous elliptic Eq. (2.2) has a unique solution θ =

G(|u|2), withG a linear operator of convolution type, so that system
(2.1), (2.2) is equivalent to equation

iut +
1
2
D∆u + 2AG(|u|2)u = 0. (2.3)

Taking the Fourier transform of (2.2) we have

θ̂k =
f̂k

|k|2 + m2
, with f =

A
ν
|u|2. (2.4)

Thus G is convolution with the inverse Fourier transform of
Aν−1(|k|2 + m2)−1, and we have

θ(x) = G(|u|2)(x) =
A
ν


R2

K0(m|x − y|)|u(y)|2d2y (2.5)

where K0 is the modified Bessel function, see [22], ch. III, or Bessel
potential in R2 (up to constants), see [23], p.186. G is a bounded,
self-adjoint operator in L2(R2,C).

The kernel K0 : R+
→ R is positive, strictly decreasing and has

the respective small and large r asymptotics

K0(r) =
1
2π

(− log r + (log 2 − γ ))+ O(r2), as r → 0 (2.6)

K0(r) =
1
2π


π

2r
e−r 

1 + O(r−1)

, as r → ∞, (2.7)

with γ the Euler–Mascheroni constant, see [22], Ch. III–V. We also
use the notation

K0,µ(r) = K0(µr), µ, r > 0. (2.8)

To avoid the singularity of K0 at the origin, some authors have
studied the nematicon system (2.3) using bounded kernels with a
comparable fast decay at infinity, such as Gaussians, see [24,14],
[13]. Most of the qualitative results below seem to apply to these
models as well, see [2] for some differences.

The nematicon Eq. (2.3) with θ = G(|u|2), G as above, can be
also written formally as

ut = −i
δH
δu∗

, with H =


R2


D
2

|∇u|2 − A|u|2G(|u|2)

, (2.9)

i.e. H is the Hamiltonian or energy of (2.3). Another conserved
quantity of (2.3) is the power P , defined as

P(u) =


R2

|u|2, (2.10)

see [25] for other conserved quantities.
In contrast to the two-dimensional cubic NLS whose solutions

can blow up in finite time, see e.g. [26,12], the nonlocal analogue
(2.3) with G as in (2.5) has solutions that exist for all times.

To state the simplest long time existence result we let Lp(RN) =

Lp(RN
; C), Hs(R2) = Hs(R2

; C), s ∈ R. We then have:

Theorem 2.1. The initial value problem for (2.3)with u(0) ∈ H1(R2)
has a unique solution u ∈ C0(R;H1(R2)) ∩ C1(R;H−1(R2)).
Moreover, ∥u(t)∥H1(R2) ≤ M0 for some M0 > 0, for all t ∈ R.

The local existence follows from a standard fixed point argu-
ment. Global existence follows by a conservation of energy argu-
ment using the idea of [4]. We give an abbreviated proof, since the
argument is also implicit in [3], see also [15], ch. 6.
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