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a b s t r a c t

We discuss a model for crack propagation in an elastic body, where the crack path is described a priori. In
particular, we develop in the framework of finite-strain elasticity a rate-independent model for crack
evolution which is based on the Griffith fracture criterion. Due to the nonuniqueness of minimizing
deformations, the energy-release rate is no longer continuous with respect to time and the position of
the crack tip. Thus, the model is formulated in terms of the Clarke differential of the energy, generalizing
the classical crack evolution models for elasticity with strictly convex energies. We prove the existence
of solutions for our model and also the existence of special solutions, where only certain extremal points
of the Clarke differential are allowed.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

In this work we discuss a model for crack propagation in an
elastic body, where the crack path is prescribed a priori. Typical
applications involve a body consisting of two parts that are glued
together along a potential crack path. The evolution is assumed
to be sufficiently slow such that inertial terms can be neglected,
which is the quasistatic setting. Even more, we are interested in
the rate-independent limit, which is relevant for cases, where the
external loading via time-dependent forces is much slower than
internal relaxation times. Thus, this paper also relates to the work
in [1–3] where prescribed crack paths are considered for cohesive
zone models describing delamination with partially debonded
crack surfaces. However, in this work we follow [4–6] and restrict
ourselves to brittle fracture, where only the not-yet-opened and
the already-opened states are admitted for the crack such that the
position of the crack tip determines all information about the crack.
The evolution of the crack tip is assumed to follow the Griffith
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law, namely a crack does not move if the energy-release rate is
less than the fracture toughness and it moves if the energy-release
rate is larger, cf. e.g. [7–10] for work on Griffith criterion. We refer
to [11] and the references therein for the physical background
and numerical simulations. In particular our paper provides an
existence result for a simplified version of the model in [11].
The novelty of the presentwork is thatwe allow for finite-strain

elasticity in the bulk of the material. Thus, the elastic energy is
nonconvex and for a given crack position there may be several
minimizing deformations ϕ : Ω → R2 of the elastic energy.
Moreover, the energy functional is no longer continuous on the
set of admissible deformations as we impose the local invertibility
constraint det∇ϕ > 0 almost everywhere in Ω . We exploit the
fact that the existence of energy-release rates for this case was
established in [12]. However, in contrast to thework in [7–9,5,6,10]
we are now faced with the difficulty that the energy-release rate is
no longer continuous with respect to the time and the position of
the crack tip, since it is defined via a minimization over the set of
all possible minimizers for the current time and crack-tip position.
Following [13,1,6,14] we construct solutions for the rate-

independent limit by a method of vanishing viscosity. However,
our aim is to derive limit equations that describe the occurring
limit solutions (also called approximable solutions) as precisely as
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possible. In this work wewill obtain solutions called local energetic
solutions which are the same as the BV solution defined in [14],
except that here we are in a unidirectional setting (ṡ ≥ 0) while
there symmetric dissipation distances are used. Because of the
jumps occurring it is useful to introduce parameterized solutions
as used also in [13,14] (called parameterized metric solutions in
the latter work). Since the present work allows for nonconvex
elasticity the underlying (reduced) energy functional will only be
Lipschitz continuous with points of non-differentiability that are
locally nonconvex.
Thus, the above-mentioned local energetic model is formulated

using the Clarke differential, which is the largest one among
the different choices for the differentials at our disposal. We
will also define corresponding special local energetic and special
parameterized solutions, where only certain extremal points in the
Clarke differential are allowed.
To be more specific, the set Ω ⊂ R2 is the reference

configuration of the elastic body,which is assumed to be a bounded
Lipschitz domain. We denote by t ∈ [0, T ] the process time and by
s ∈ [s0, s1] ⊂ [0, L] the position of the crack tip. Here γ : [0, T ] →
Ω is the prescribed crack path in arc-length parameterization and
we assume γ ∈ C2,1([0, L];R2). For a given crack position s the
set of admissible deformations is W1,p(Ωs;R2), where Ωs = Ω \

{γ (σ ) | σ ∈ [0, s]}. We define the reduced energy functional
I : [0, T ] × [s0, s1] → R by minimizing the full energy functional
with respect to the elastic deformation:

I(t, s) = min
{∫

Ωs

W (∇ϕ) dx− 〈`(t), ϕ〉 |

ϕ ∈ W1,p(Ωs;R2), (ϕ − gDir)
∣∣
ΓDir
= 0

}
.

Under suitable technical assumptions we show that the mapping
(t, s) 7→ I(t, s) − λ

2 (t
2
+ s2) is concave for a suitable λ > 0.

Thus, for each point (t∗, s∗) all directional derivatives exist and
determine the Clarke differential completely. In fact, in the λ-
concave case there is a close relation between different notions of
subdifferentials like the Clarke differential, the Fréchet differential
and the subdifferential from convex analysis, cf. Section 3.1. In [12]
it was shown that the total energy-release rate

G(t, s) := −∂+s I(t, s) ≥ 0

exists for all t and s, but we need additional one-sided continuity
properties and semi-continuities of the one-sided partial deriva-
tives ∂±s I and ∂±t I. The concavity implies for the negative of the
energy-release rates the estimates ∂+s I(t, s) ≤ ∂−s I(t, s), where
inequality occurs due to different elastic minimizers. We define

G−(t, s) := −∂−s I(t, s)

satisfying

0 ≤ G−(t, s) = lim
δ↘0

G(t, s− δ) ≤ G(t, s).

The fracture toughness is encoded in the continuous function
κ : [s0, s1] →]0,∞[. Since our solutions will be non-decreasing
the left-hand limit s(t−) and the right-hand limit s(t+) exist for all
t and we define the continuity set C(s) = {t ∈ [0, T ] | s(t−) =
s(t) = s(t+)}. With this we obtain the jump set J(s) and the
differentiability set D(s) as follows

J(s) = [0, T ] \ C(s), D(s) = {t ∈ [0, T ] | ṡ(t) exists}.

A local energetic solution to the crack problem is a function s ∈
BV([0, T ]; [s0, s1]) that satisfies for all t ∈ [0, T ] the following
conditions

(a) s is non-decreasing;
(b) if t 6∈ J(s), then κ(s(t))+ ∂−s I(t, s(t)) ≥ 0;

(c) if κ(s(t))+ ∂+s I(t, s(t)) > 0, then t ∈ D(s) and ṡ(t) = 0;
(d) for all t∗ ∈ J(s) and all s∗ ∈ [s(t−∗ ), s(t

+
∗
)] we have κ(s∗) +

∂+s I(t∗, s∗) ≤ 0.

Condition (a) is the unidirectionality (sometimes called irre-
versibility). Condition (b) is a kind of stability condition for rate-
independent systems, namely G−(t, s(t)) = −∂−s I(t, s(t)) ≤
κ(s(t)). This means that the smallest possible energy release can-
not be bigger than the fracture toughness since otherwise the crack
would have already moved further. Condition (c) is one part of the
Griffith criterion, namely that the crack does not move if the re-
lease rate G(t, s(t)) is less than the toughness κ(s(t)). Condition
(d) states that along a jump the energy-release rate is at least as
big as the toughness.
We will show in Section 4 that limits from vanishing-viscosity,

time-incremental problems are in fact local energetic solutions.
Actually the discrete solutions for the incremental problems
are strictly related with the special local energetic solutions
(cf. formula (4.4)), but in order to perform the limit passage as the
time step goes to zero we have to also involve ∂−s I and therefore
are able to derive local energetic solutions. However, as indicated
via the example discussed in Section 4.3 there may still be too
many solutions of this type. In fact, we conjecture that the limits
constructed are always special local energetic solutions, which differ
from the general local energetic solutions by replacing (b) by the
stronger condition

(bs) if t 6∈ J(s), then κ(s(t))+ ∂+s I(t, s(t)) ≥ 0.

This leads to the exact Griffith criterion G(t, s(t)) = κ(s(t)) along
slowly moving cracks.
In Section 5 we finally show that special local energetic

solutions exist. For this we use corresponding parameterized
solutions. Moreover, for these solutions we establish the energy
balance

I(t2, s(t2))+
∫ s(t2)

s(t1)
κ(σ ) dσ + µ(s, [t1, t2])

= I(t1, s(t1))+
∫ t2

t1
∂−t I(τ , s(τ )) dτ

where, as in [6],µ(s, [t1, t2]) denotes the extra energy losses along
jumps at times t ∈ [t1, t2], see (2.8).
Finally we emphasize that our local energetic solutions are

quite different from the energetic solutions discussed in [7,8,15],
as the energetic solutions always satisfy a global stability condition
which is stronger than (b) and (c), but in return the jumps are
considered as true jumps and nothing is said about the curve
connecting the points s(t−) and s(t+) and (d) is not valid. However,
the global stability enforces the energy balance (2.9) with µ ≡ 0.
See also the discussion in [6].

2. Set up of the model

In this section we collect all the assumptions on the data that
will be satisfied throughout this paper.
The reference configuration is a bounded open subset of the

plane,Ω ⊂ R2, with Lipschitz boundary ∂Ω . We assume that ∂Ω
is the union of two disjoint subsets ΓD and ΓN, withH 1(ΓD) > 0,
where H 1 denotes the one-dimensional Hausdorff measure. On
the Dirichlet part of the boundaryΓD we impose a time-dependent
boundary deformation gDir(t), while on the Neumann part ΓN we
prescribe surface forces h(t).
The prescribed crack path is represented by a simple C2,1-

path (i.e., the second derivative is Lipschitz continuous) C ⊂ Ω

with H 1(C) =: L and let γ : [0, L] → C be its arc-length
parameterization. We assume that for every s ∈ ]0, L[ we have
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