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a b s t r a c t

Here we study geodesics connecting two given points on odd-dimensional spheres
respecting the Hopf fibration. This geodesic boundary value problem is completely solved
in the case of three-dimensional sphere and some partial results are obtained in the general
case. The Carnot–Carathéodory distance is calculated. We also present some motivations
related to quantum mechanics.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Sub-Riemannian geometry is proved to play an important role in many applications, e.g., in mathematical physics,
geometric mechanics, robotics, tomography, neurosystems, and control theory. Sub-Riemannian geometry enjoys major
differences from the Riemannian being a generalization of the latter at the same time, e.g., the notion of geodesic and length
minimizer do not coincide even locally, the Hausdorff dimension is larger than the manifold topological dimension, the
exponential map is never a local diffeomorphism. There exists a large amount of literature developing sub-Riemannian
geometry. Typical general references are [1–4].

The interest in odd-dimensional spheres comes first of all from finite-dimensional quantum mechanics modeled over
the Hilbert space Cn where the dimension n is the number of energy levels and the normalized state vectors form the
sphere S2n−1

⊂ Cn. The problem of controlled quantum systems is basically the problem of controlled spin systems, which
is reduced to the left- or right-invariant control problem on the Lie group SU(n). In other words, these are problems of
describing the sub-Riemannian structure of S2n−1 and the sub-Riemannian geodesics; see e.g., [5,3]. The special case n = 2
is well studied and the sub-Riemannian structure is related to the classical Hopf fibration; see, e.g., [6,7]. At the same
time, the sub-Riemannian structure of S3 comes naturally from the non-commutative group structure of SU(2) in the sense
that two vector fields span the smoothly varying distribution of the tangent bundle, and their commutator generates the
missing direction. The missing direction coincides with the Hopf vector field corresponding to the Hopf fibration. The sub-
Riemannian geometry on S3 was studied in [8–11]; see also [12]. Explicit formulas for geodesics were obtained in [13] by
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solving the corresponding Hamiltonian system, in [10] from a variational equation, in [12] by exploiting the Lie theory and
in [14] by applying the structure of the principle S1-bundle. Spectral analysis of the sub-Laplacian on S3 was provided in [8].
One of the important helping properties of odd-dimensional spheres is that there always exists at least one globally defined
non-vanishing vector field.

Observe that S3 is compact and many properties and results of sub-Riemannian geometry differ from the standard
nilpotent case, e.g., Heisenberg group or Engel group. In the case S2n−1, n > 2, we have no group structure and the main
tool is the global action of the group U(1). For example, in our paper we explicitly show that any two points of S3 can be
connected with an infinite number of geodesics.

Because of important applications, we start our paper with the description of n-level quantum systems and motivation
given by Berry phases. Further we continue with general formulas for geodesics. Then we concentrate our attention on
the geodesic boundary value problem finding all sub-Riemannian geodesics between two given points. In the case of S2n−1

we solve it for the points of the fiber and for S3 we solve it for arbitrary two points. The Carnot–Carathéodory distance is
calculated.

2. n-level quantum systems

Themathematical formulation of quantummechanics is based on concepts of pure andmixed states. A complex separable
Hilbert space H with Hermitian product ⟨·, ·⟩ (or ⟨·|·⟩ in Dirac notations) is called the state space. The exact nature of this
Hilbert space depends on the concrete system. For an n-level quantum system,H = Cn with the standard Hermitian product
⟨z|w⟩ =

∑n
j=1 zjw̄j. An observable is a self-adjoint linear operator acting on the state space. A state ρ is a special case of

observable which is Hermitian ρĎ
= ρ, normalized by tr ρ = 1, and positive ⟨w|ρ|w⟩ ≥ 0 for all vector |w⟩ ∈ H, where

ρ|w⟩ denotes the result of the action of the operator ρ on the vector |w⟩. A pure state is the one-complex-dimensional
projection operator ρ = |z⟩⟨z| onto the vector |z⟩ ∈ H, i.e., an operator satisfying ρ2

= ρ. Other states are called mixed
states.

The space of pure states is isomorphic to the projectivization HP of the Hilbert space H. So equivalently we can define
pure states as normalized vectors ⟨z|z⟩ = 1 modulo a complex scalar eiθ , where θ is called a phase. In the case of the n-
level quantum system H = Cn, normalization and the phase factor allow us to represent the space of pure states as the
complex projective space CPn−1

≡ Cn
P. The second operation of phase factorization is realized by the higher-dimensional

Hopf fibration

S1 ↩→ S2n−1
→ CPn−1,

where S2n−1 is the real (2n− 1)-dimensional sphere embedded into Cn, and the base space CPn−1 is the set of orbits of the
action S1 on S2n−1.

In what follows, the pure states ρ are the elements of the projective space CPn−1, at the same time we use the notation
of state |z⟩ ∈ S2n−1 to refer to a normalized representative of the phase-equivalence class ρ. The real dimension of the space
of pure states is 2n− 2. The projective space CPn−1 endowed with the Kählerian Fubini–Study metric on CPn−1 becomes a
metric space, in which this Riemannian metric is given by the real part of the Fubini–Study metric and it coincides with the
push-forward of the standard Riemannian metric (the real part of the Hermitian one) on the (2n − 1)-sphere by the Hopf
projection.

In the case n = 2 the projective complex plane CP is isomorphic to the sphere S2 (called the Bloch sphere for two-level
systems in physics), which is thought of as the set of orbits of the classical Hopf fibration

S1 ↩→ S3
→ S2.

Each pair of antipodal points on the Bloch sphere corresponds to a mutually exclusive pair of states of the particle, namely,
spin up and spin down. The Bloch sphere and the Hopf fibration describe the topological structure of a quantummechanical
two-level system; see [6,7]. The interest to two-level systems, an old subject, recently has gained a renewed interest due
to recent progress in quantum information theory and quantum computation, where two-level quantum systems became
qubits coupled in q-registers. A qubit state is represented up to its phase by a point on the Bloch sphere. The topology of a
pair of entangled two-level systems is given by the Hopf fibration

S3 ↩→ S7
→ HP,

where H is the space of quaternions and HP ∼= S4 is its projectivization; see [15]. Generally, for entangled n-level systems
we have

S3 ↩→ S4n−1
→ HPn−1.

The underlying manifold for the Lie group SU(2) is S3. Considering the higher-dimensional group SU(n), we see that it acts
on S2n−1. However, its dimension is n2

− 1 > 2n − 1, n > 2, and its manifold only contains the invariant sphere S2n−1.
Returning back to the information theory motivation, the relevant group for p-qubits is SU(2p); see, e.g., [16,17].
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