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a b s t r a c t

We investigate nonlinear phenomena in dispersed two-phase systems under creeping-flow conditions.
We consider nonlinear evolution of a single deformed drop and collective dynamics of arrays of
hydrodynamically coupled particles. To explore physical mechanisms of system instabilities, chaotic drop
evolution, and structural transitions in particle arrays we use simple models, such as small-deformation
equations and effective-medium theory. We find numerical and analytical solutions of the simplified
governing equations. The small-deformation equations for drop dynamics are analyzed using results of
dynamical systems theory. Our investigations shed new light on the dynamics of complex fluids, where
the nonlinearity often stems from the evolving boundary conditions in Stokes flow.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

The Navier–Stokes equations contain the inertial term that
gives rise to numerous nonlinear phenomena, such as flow
instabilities [1], complex convective patterns [2], and turbulence
[3]. However, there also exist nonlinear hydrodynamic phenomena
that are not due to nonlinear inertial contributions. These
nonlinear phenomena occur under creeping-flow conditions in
interfacial and particulate flows. The Stokes equations governing
the fluid flow are linear so the nonlinearity stems entirely from the
evolving boundary conditions.
We present two examples of multiphase systems that exhibit

complex nonlinear behavior under creeping-flow conditions. The
first system is a deformable highly viscous drop subject to external
2D linear flow. The second example is an ordered array of
rigid spherical particles in strongly confined Poiseuille flow. The
nonlinear coupling in the first system results from the influence
of the external flow on the shape of the deformed drop. The
nonlinearity in the other system stems from the hydrodynamic
interactions between particles.
The interplay between the flow and moving phase boundaries

produces diverse nonlinear effects in the two systems under
discussion. For viscous drops, there occurs a hysteretic response
of the drop shape to quasistatic change of the external flow
vorticity, andwe also observe period-doubling bifurcations leading
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to chaos, for periodically varying vorticity [4]. In the other system
the interaction between regular particle arrays and Poiseuille flow
results in propagation of particle displacement waves, sudden
lattice rearrangements, order–disorder transitions, and fingering
instabilities [5]. We elucidate the underlying physical mechanisms
of these phenomena.
Our paper is organized as follows: In Section 2 we discuss the

dynamics of viscous drops in external 2D linear flowswith rotation.
In Section 3 we analyze the collective dynamics of ordered particle
arrays in Poiseuille flow in a parallel-wall channel. Our conclusions
are presented in Section 4.

2. Hysteretic and chaotic drop dynamics

The evolution of a deformable viscous drop is considered in
linear creeping flowswith rotation.We focus on systemswhere the
drop viscosity is much higher than the continuum phase viscosity.
In the creeping-flow regime, the evolving boundary conditions due
to themotion of the drop interface are the only source of nonlinear
dynamics.
We find that nonlinear coupling of the drop deformation

and rotation to the external flow results in drop bistability and
hysteresis in quasistatic drop shape evolution. We also analyze
a novel chaotic drop dynamics resulting from a period-doubling
bifurcation cascade.

2.1. Viscous drop in creeping flows

We consider a viscous drop immersed in an incompressible
fluid of a constant viscosity µ. The viscosity of the drop is µ̂ = λµ
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Fig. 1. Decomposition of a linear incident flow into pure strain and rigid-body
rotation.

(where λ is the viscosity ratio), and the interfacial tension between
the two phases is σ . The fluid velocity u and pressure p in the
regions inside and outside the drop are described by the Stokes
equations

µi∇
2u = ∇p, (1)

∇ · u = 0, (2)

where µi = µ̂ or µ is the corresponding fluid viscosity. The non-
linear boundary condition on the drop interface is the balance of
normal stress with the capillary pressure

[n̂ · τ · n̂] = 2κσ , (3)

where τ is the viscous stress tensor, n̂ is the outward normal unit
vector, and κ is the local curvature of the interface.
The drop is subject to a 2D linear incident flow

u0(r) = γ̇ (Es + β�) ·r, (4)

where γ̇ is the strain rate, β is the dimensionless vorticity
parameter, r is the position, and

Es =
1
2

(0 1 0
1 0 0
0 0 0

)
, � =

1
2

( 0 1 0
−1 0 0
0 0 0

)
(5)

are the symmetric and antisymmetric parts of the velocity gradient
tensor. The symmetric part describes a purely straining flow, and
the antisymmetric part corresponds to rigid-body rotationwith the
angular velocity ω = 1

2βγ̇ . The decomposition of incident flow
(4) into the straining and vorticity components associated with
tensors Es and� is sketched in Fig. 1.
Three dimensionless parameters characterize the dynamics of

the viscous drop. The viscosity ratio λ describes the relative mag-
nitude of dissipative forces in the drop phase and continuous phase
fluids. The capillary number Ca = aµγ̇ /σ (where a is the radius of
an undeformed drop) gives the ratio between the deforming vis-
cous forces produced by the imposed flow (4) and the capillary
forces driving the drop towards the equilibrium spherical shape.
Finally, the vorticity parameter β describes the magnitude of the
rotational component of the external flow relative to the exten-
sional component.

2.2. Bistable stationary states and hysteresis

For sufficiently large viscosity ratios (λ > 100) and moderate
capillary numbers (below the critical value for drop-breakup
instability), two stable stationary drop shapes are found for a
range of β between critical values β1 and β2. These two stationary
states are illustrated in Fig. 2. The drop shape shown in Fig. 2(a) is
elongated and nearly aligned with the extensional axis x = y; the
shape shown in Fig. 2(b) is nearly spherical [6].
The elongated stationary shape results from the balance

between drop deformation by the extensional flow component and
drop relaxation due to the capillary forces. The respective time
scales for the drop deformation and relaxation are tγ = λγ̇−1 and
tσ = λµaσ−1, both of which are proportional to the viscosity ratio
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Fig. 2. (a) Surface-tension-stabilized elongated drop. (b) Rotationally stabilized
compact drop. (c) Hysteresis of a highly viscous drop in 2D linear flowwith varying
vorticity. Results are from boundary-integral simulations with λ = 200 and Ca =
0.20. Inset shows the dependence of vorticity on time.

for λ� 1. The drop deformation D = (l− 2a)/a (where l denotes
the drop length) is determined by the time scale ratio

D ∼ tσ /tγ = Ca. (6)

Therefore, D is independent of the viscosity ratio in the limit
λ→ ∞. The O(λ−1) internal circulation inside an elongated high
viscosity drop isweak for large λ. Thus the drop behaves like a rigid
bodywhose equilibriumorientation results from the balance of the
torques produced by the straining and rotational components of
the external flow, as depicted in Fig. 2(a).
The compact stationary shape is stabilized by the circulation of

the fluid inside the drop,which rotateswith an angular velocityωd,
nearly equal to the angular velocity ω of the external flow. Within
each period of rotation the drop undergoes a small deformation
produced by the straining component of the external flow, as
schematically illustrated in Fig. 2(b). However, the deformation
does not grow, because it is constantly convected away by the
rotational component of the flow. Since the rotation occurs on the
time scale trot = (βγ̇ )−1, and the drop deforms on themuch longer
timescale tγ = λγ̇−1, we find that the drop deformation in the
compact state,

D ∼ trot/tγ = (βλ)−1, (7)

is small for λ� 1.
The existence of two stationary states implies a hysteretic drop

response to quasistatic variation of vorticity β . Such hysteresis in
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