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We formulate a stochastic least-action principle for solutions of the incompressible Navier-Stokes
equation, which formally reduces to Hamilton’s principle for the incompressible Euler solutions in the

case of zero viscosity. We use this principle to give a new derivation of a stochastic Kelvin Theorem
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for the Navier-Stokes equation, recently established by Constantin and lyer, which shows that this
stochastic conservation law arises from particle-relabelling symmetry of the action. We discuss issues
of irreversibility, energy dissipation, and the inviscid limit of Navier-Stokes solutions in the framework
of the stochastic variational principle. In particular, we discuss the connection of the stochastic Kelvin
Theorem with our previous “martingale hypothesis” for fluid circulations in turbulent solutions of the
incompressible Euler equations.
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1. Introduction

Alternative formulations of standard equations can be very
illuminating and can cast new light on old problems. As just
one example, consider how Feynman’s path-integral solution
of the Schrédinger equation enabled intuitive new approaches
to difficult problems with many degrees-of-freedom, such as
quantum electrodynamics and superfluid helium. In this same
spirit, many different mathematical formulations have been
developed for the equations of classical hydrodynamics, both
ideal and non-ideal. Recently, Constantin and Iyer [1] have
presented a very interesting representation of solutions of
the incompressible Navier-Stokes equation by averaging over
stochastic Lagrangian trajectories in the Weber formula [2] for
incompressible Euler solutions. Their formulation is a nontrivial
application of the method of stochastic characteristics, well known
in pure mathematics [3] (Chapter 6), in theoretical physics [4,5]
and in engineering modeling [6,7]. The characterization of the
Navier-Stokes solutions in [1] is through a nonlinear fixed-point
problem, since the velocity field that results from the average over
stochastic trajectories must be the same as that which advects the
fluid particles. Constantin and Iyer have shown that their stochastic
representation implies remarkable properties of Navier-Stokes
solutions in close analogy to those of ideal Euler solutions, such as
a stochastic Kelvin Theorem for fluid circulations and a stochastic
Cauchy formula for the vorticity field.
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In this paper, we point out some further remarkable features
of the stochastic Lagrangian formulation of [1]. Most importantly,
we show that the nonlinear fixed-point problem that characterizes
the Navier-Stokes solution is, in fact, a variational problem
which generalizes the well-known Hamilton-Maupertuis least-
action principle for incompressible Euler solutions [8]. We
shall demonstrate this result by a formally exact calculation,
at the level of rigor of theoretical physics. A more careful
mathematical proof, with the set-up of relevant function spaces,
precise definitions of variational derivatives, etc. shall be given
elsewhere. Closely related stochastic variational formulations of
incompressible Navier-Stokes solutions have been developed
recently by others [9-11] and a detailed comparison with these
approaches will also be made in future work.

Our variational formulation sheds some new light on a basic
proposition of [1], the stochastic Kelvin Theorem which was
established there for smooth Navier-Stokes solutions at any finite
Reynolds number. We show that this result is a consequence of
particle-relabelling symmetry of our stochastic action functional
for Navier-Stokes solutions, in the same manner as the usual
Kelvin Theorem arises from particle-relabelling symmetry of the
standard action functional for Euler solutions [8]. This result
strengthens the conjecture made by us in earlier work [12,13] that
a “martingale property” of circulations should hold for generalized
solutions of the incompressible Euler equations obtained in the
zero-viscosity limit. Indeed, the stochastic variational principle for
Navier-Stokes solutions considered in the present work is very
closely similar to a stochastic least-action principle for generalized
solutions of incompressible Euler equations that was developed
by Brenier [14-16]. One of the arguments advanced for the
“martingale property” in [12] was particle-relabelling symmetry
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in a Brenier-type variational formulation of generalized Euler
solutions. That argument, however, did not distinguish an arrow
of time, so that fluid circulations might satisfy the martingale
property either forward or backward in time. It was subsequently
argued in [13] that the backward-martingale property is the
correct one, consistent with time-irreversibility in the limit
of vanishing viscosity. The present work shows that a small
but positive viscosity indeed selects the backward martingale
property, as expected for a causal solution.

2. The action principle

The action principle formulated here for Navier-Stokes solu-
tions involves stochastic flows [3]. The relevant flows are those
which solve a backward Ito equation:

{&[xm @, t) = u” (X7 (a, t), )dt + v 2vdW?” (1),

t <t
1
x?(a, tf) = a. (1)

Here W” (t), t € [to, tf] is a d-dimensional Brownian motion on a
probability space (§2, P, ¥) which is adapted to a two-parameter
filtration F of sub-o-fields of ¥, with ty < t < t' < t;. Thus,
W7 (s) — W7 (s) is Ttt’-measurable forallt <s < s < t'.The
constant v that appears in the amplitude of the white-noise term
in the SDE (1) will turn out to be the kinematic viscosity in the
Navier-Stokes equation. Note that, for such an additive noise as
appears in (1), the (backward) Ito and Stratonovich equations are
equivalent.

In order to describe the space of flow maps which appear
in the action principle, we must make a few slightly technical,
preliminary remarks. The random velocity field u® (r, t) in Eq. (1)
is assumed to be smooth and, in particular, continuous in time,

as well as adapted to the filtration .'f:ttf, t < t; backward in
time. It then follows from standard theorems (e.g. see Corollary
4.6.6 of [3]) that the solution x® (a, t) of (1) is a backward semi-
martingale of flows of diffeomorphisms. Conversely, any backward
semi-martingale of flows of diffeomorphisms has a backward
Stratonovich random infinitesimal generator F’ (r, t) which is
a spatially-smooth backward semi-martingale (e.g. see Theorem
4.4.4 of [3]). The class of such flows for which the martingale part of
the generator is V/2vW? () and for which the bounded-variation
part of the generator is absolutely-continuous with respect to dt
coincides with the class of solutions of equations of form (1), for
all possible choices of u® (r, t). Clearly, the random fields u® (r, t)
and x” (a, t) uniquely determine each other. We consider here
the incompressible case, where u?® (r, t) is divergence-free and
X? (a, t) is volume-preserving a.s.

The action is defined as a functional of the backward-adapted
random velocity fields u?® (r, t)—or, equivalently, of the random
flow maps x? (a, t)—by the formula

i 1
S[x] = /P(dw)/ dtfddr 5|uw(r, t))? (2)
to

when this is well defined and as +oo otherwise. The variational
problem (VP) is to find a stationary point of this action such that
X7 (a, tr) = aandx? (a, to) = @7 (a) for P —a.e. w, where ¢ (a)
is a given random field of volume-preserving diffeomorphisms
of the flow domain. It is interesting that this problem is very
similar to that considered by Brenier [ 14-16] for generalized Euler
solutions. The above problem leads instead to the incompressible
Navier-Stokes equation, in the following precise sense:

Proposition 1. A stochastic flow xX® (a, t) which satisfies both the
initial and final conditions is a solution of the above variational prob-
lem if and only if u® (r, t) solves the incompressible Navier-Stokes
equation with viscosity v > 0

0u” + (u”-V)u? = —Vp” + vAu”, P-as. ()

where kinematic pressure p® is chosen so that V-u® = 0.

Proof. Making a variation du® (r, t) in the random velocity field,
the Eq. (1) becomes

d:5x7 (a, t)
= [6x7 (a, ).V, u®” X7, t) + su” (x7, t)]dt,
X7 (a, ;) = 0.

< l'f (4)

Since the VP requires that x” (a,ty) = ¢ (a), one can only
consider variations such that, also, 6x” (a, tg) = 0. (We shall
consider below an alternative approach with a Lagrange multiplier
that permits unconstrained variations.) This equation may also be
written as

d:8x7 (a, t) — (V,u” (x7, 1)) T6x7 (a, t)dt

= su” (X7, t)dt (5)
for t < t; and then easily solved by Duhamel’s formula (backward
in time) to give §x”(a,t) in terms of Su®(r,t). Since the

martingale term vanished under variation, the process §x® (a, t)
is of bounded variation and clearly adapted to the backward

filtration }}tf ,t < tr. Conversely, any such flow variation
will determine the corresponding velocity variation éu® (r, t) by
Eq. (5) directly. Lastly, note that the volume-preserving condition
det(V Xx? (a, t)) = 1 becomes

V,8x” @7,t) =0 (6)

under variation, where a”(r,t) is the “back-to-labels” map
inverse to the flow map Xx”(a, t). Because these maps are
diffeomorphisms, we see that the Eulerian variation of the flow
map, 8X? (r, t) = §x? (a% (r, t), t), is an arbitrary divergence-free
field.

With these preparations, we obtain for the variation of the
action (2):

t
8S[x] = fP(dw)/fdt/ddruw(r, £)-8u” (r, t)
to

¢
/P(dw)/dda/f u” (x”(a, ), t)
fo

. [mew @, t) — 5x” (a, t)-V,u” (x°, t)dt]

tf R
—/P(dw)/dda/ [dtuw(xw,t)
to
+v, (;m’ﬂz)

In the second line we employed (5). In the third line we integrated
by parts, using the facts that §x” (a, tf) = 6x”(a, tp) = 0 and
that §x” (a, t) is a bounded-variation process, so that the quadratic

variation vanishes: Eir(u"" x7,t),5x7 (a,t)) = 0. We note that
the final gradient term vanishes, because §X® (r, t) is divergence-
free. We can evaluate the remaining term using the chain rule

d;u® (X7, t)
= 3u” (X7, t)dt + (X7 (a, odt)-V)u” (x7, t), (8)

in terms of the backward Stratonovich differential. This result can
also be written using Ito calculus. Calculating from (1) and (8) the
quadratic variation

V20d (W (1), Byu” (X7, 1)) = 2vAu” (X7, t)dt,
one obtains the backward Ito equation
deu® (x7, t) = [0;u” 4+ (u”-V)u” — vAu”|(x7, t)dt
+ V20 dWT (£)-V)u” (X7, t). (9)

dt] $X7 (a, t). 7)
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