

Contents lists available at ScienceDirect

Journal of Geometry and Physics

journal homepage: www.elsevier.com/locate/jgp

Symmetries of sub-Riemannian surfaces

José Ricardo Arteaga B. a,*, Mikhail Armenovich Malakhaltsev b

- a Universidad de los Andes, Bogotá, Colombia
- ^b Kazan State University, Kazan, Russia

ARTICLE INFO

Article history:
Received 13 September 2009
Received in revised form 16 September 2010
Accepted 30 September 2010
Available online 13 October 2010

MSC: 58A17 53C05

53C17 58E25

Keywords:
Nonholonomic mechanics
Equivalence method
G-structures
Sub-Riemannian geometry
Vakonomic dynamics

ABSTRACT

We obtain some results on symmetries of sub-Riemannian surfaces. In case of a contact sub-Riemannian surface we base on invariants found by Hughen [15]. Using these invariants, we find conditions under which a sub-Riemannian surface does not admit symmetries. If a surface admits symmetries, we show how invariants help to find them. It is worth noting, that the obtained conditions can be explicitly checked for a given contact sub-Riemannian surface. Also, we consider sub-Riemannian surfaces which are not contact and find their invariants along the surface where the distribution fails to be contact.

© 2010 Elsevier B.V. All rights reserved.

0. Introduction

A sub-Riemannian manifold is a k-dimensional distribution endowed with a metric tensor on an n-dimensional manifold. At present sub-Riemannian geometry is intensively studied; this is motivated by applications in various fields of science (see, e.g. the book [1], where many applications of sub-Riemannian geometry are presented; also, for interesting examples, we refer the reader to [2–10], where applications to mechanics, thermodynamics, and biology are given). At the same time, various aspects of the theory of symmetries of sub-Riemannian manifolds are widely investigated because symmetries are always of great importance for applications [11,12]. Many papers are devoted to the theory of homogeneous (in part, symmetric) sub-Riemannian manifolds (see e.g. [13–16]). The main investigation tool in these papers is the Lie algebra theory as is usual when we study homogeneous spaces.

In the present paper we study symmetries of sub-Riemannian surfaces, i.e. of sub-Riemannian manifolds with k=2 and n=3. Our main goal is to give a practical tool (or an algorithmic procedure) for investigation of symmetries of a sub-Riemannian surface. The paper is organized as follows. In the first section we give in detail the construction of invariants of a contact sub-Riemannian surface using the Cartan reduction procedure (here we follow [15]) and show how to calculate them. In the second section we demonstrate how to apply invariants to finding symmetries of a contact sub-Riemannian surface. Finally, in the third section we consider a sub-Riemannian surface without assumption that it is contact and find invariants along the "singular surface", where the distribution fails to be contact.

^{*} Corresponding author. Tel.: +57 1 5280316.

E-mail addresses: jarteaga@uniandes.edu.co (J.R. Arteaga B.), Mikhail.Malakhaltsev@ksu.ru (M.A. Malakhaltsev).

1. Contact sub-Riemannian surfaces

Let M be an n-dimensional manifold and Δ be a k-dimensional distribution on M endowed with a metric tensor field

$$\forall p \in M, \quad \langle \cdot, \cdot \rangle_p : \Delta_p \times \Delta_p \to \mathbb{R}. \tag{1}$$

Then $(M, \Delta, \langle \cdot, \cdot \rangle)$ is called a *sub-Riemannian manifold* [1].

In the present paper we consider a *sub-Riemannian surface* $\delta = (M, \Delta, \langle \cdot, \cdot \rangle)$, i.e. a two-dimensional distribution Δ on a three-dimensional manifold M, where Δ is endowed with a metric tensor field $\langle \cdot, \cdot \rangle$. In addition, we assume that *the distribution* Δ *and the manifold* M *are oriented*. Note that we do not suppose that any metric on M is given.

Throughout the paper we will denote the Lie algebra of vector fields on a manifold N by $\mathfrak{X}(N)$, and the space of covector fields by $\mathfrak{X}(N)^*$. Also the space of r-forms on N will be denoted by $\Lambda^r(N)$.

1.1. G-structure associated with a sub-Riemannian surface

1.1.1. Elements of theory of G-structures

We recall here notions and results of the theory of *G*-structures we use in the present paper (for the details we refer the reader to [1,17]).

Tautological forms, pseudoconnection form, and structure equations. Let M be a smooth n-dimensional manifold, and $\pi: B(M) \to M$ be the coframe bundle of M.

On B(M) the tautological forms $\theta^a \in \Omega^1(B(M))$ are defined as follows [17]. For a point $\xi \in B(M)$ ($\xi = \{\xi^a\}_{a=\overline{1,n}}$ is a coframe of T_nM , where $p = \pi(\xi)$), we set

$$\theta_{\varepsilon}^{a}: T_{\varepsilon}(B(M)) \to \mathbb{R}, \quad \theta_{\varepsilon}^{a}(X) = \xi^{a}(d\pi(X)).$$
 (2)

Now, on a neighborhood U of a point $p \in M$, take a coframe field $\eta = \{\eta^a\}$. This gives a trivialization $\alpha : \pi^{-1}(U) \to U \times GL(n)$: to a coframe ξ at $p \in U$ we assign $(p,g) \in U \times GL(n)$ such that $\xi^a = \tilde{g}^a_b \eta^b_n$, where $\|\tilde{g}^a_b\| = g^{-1}$.

For a coframe field η on U let us consider the pullback 1-forms $\bar{\eta}^a = d\pi^* \eta^a$ on $U \times GL(n) \cong \pi^{-1}(U) \subset B(M)$. Then

$$\theta_{(p,\sigma)}^a = \tilde{g}_b^a \bar{\eta}_{(p,\sigma)}^b = \tilde{g}_b^a d\pi^* \eta_p^b. \tag{3}$$

A *G*-structure $P \to M$ is a principal subbundle of $\pi: B(M) \to M$ with structure group $G \subset GL(n)$. The tautological forms on P are the restrictions of θ^a to P and will be denoted by the same letters.

Let us denote by $\mathfrak g$ the Lie algebra of the Lie group G. A pseudoconnection form ω on a G-structure $\pi:P\to M$ is a $\mathfrak g$ -valued 1-form on P such that $\omega(\sigma(a))=a$, where $\sigma(a)$ is the fundamental vector field ([17], Ch. I, Sec. 5) on P corresponding to $a\in\mathfrak g$.

Given a pseudoconnection form ω , we have *structure equations* on P:

$$d\theta^a = \omega_b^a \wedge \theta^b + T_{bc}^a \theta^b \wedge \theta^c \tag{4}$$

where the functions $T_{bc}^a: P \to \mathbb{R}$ uniquely determined by the Eq. (4) are called *torsion functions*, and the map $T: P \to \Lambda^2 \mathbb{R}^n \otimes \mathbb{R}^n$, $\xi \to \{T_{bc}^a(\xi)\}$, is called the *torsion* of the pseudoconnection ω_b^a .

Structure function. Let us find how the torsion changes under change of the pseudoconnection. If ω_b^a , $\hat{\omega}_b^a$ are pseudoconnections on P, then $\mu_b^a = \hat{\omega}_b^a - \omega_b^a$ is a \mathfrak{g} -valued form on P with the property that $\mu(\sigma(a)) = 0$ for any $a \in \mathfrak{g}$. Then $\mu_b^a = \mu_{bc}^a \theta^c$.

$$d\theta^{a} = \hat{\omega}_{b}^{a} \wedge \theta^{b} + \hat{T}_{bc}^{a} \theta^{b} \wedge \theta^{c} = (\omega_{b}^{a} + \mu_{bc}^{a} \theta^{c}) \wedge \theta^{b} + \hat{T}_{bc}^{a} \theta^{b} \wedge \theta^{c} = \omega_{b}^{a} \wedge \theta^{b} + (\hat{T}_{bc}^{a} - \mu_{[bc]}^{a}) \theta^{b} \wedge \theta^{c}$$

$$= \omega_{b}^{a} \wedge \theta^{b} + T_{bc}^{a} \theta^{b} \wedge \theta^{c}. \tag{5}$$

It hence follows that

$$\hat{\omega}_b^a = \omega_b^a + \mu_{bc}^a \theta^c \Rightarrow \hat{T}_{bc}^a = T_{bc}^a + \mu_{[bc]}^a. \tag{6}$$

Let us define the Spencer operator δ from the space of tensors $T_1^2(\mathbb{R}^n)$ of type (2, 1) to the space $\Lambda^2(\mathbb{R}^n) \otimes \mathbb{R}^n$ as follows:

$$\delta: t_{bc}^a \in T_1^2(\mathbb{R}^n) \mapsto t_{[bc]}^a = \frac{1}{2} (t_{bc}^a - t_{cb}^a). \tag{7}$$

Note that $\mathfrak{g} \otimes (\mathbb{R}^n)^* \subset \mathfrak{gl}(n) \otimes \mathbb{R}^* \cong T_1^2(\mathbb{R}^n)$ and we will denote the restriction of δ to $\mathfrak{g} \otimes (\mathbb{R}^n)^*$ by the same letter δ . Thus, (6) can be rewritten as follows:

$$\hat{\omega}_b^a = \omega_b^a + \mu_{bc}^a \theta^c \Rightarrow \hat{T}_{bc}^a = T_{bc}^a + \delta(\mu_{bc}^a). \tag{8}$$

From (8) we conclude that if $\delta: \mathfrak{g} \otimes (\mathbb{R}^n)^* \to \Lambda^2(\mathbb{R}^n) \otimes \mathbb{R}^n$ is a monomorphism, then, pseudoconnections ω_b^a , $\hat{\omega}_b^a$ with the same torsion T_{bc}^a coincide.

Download English Version:

https://daneshyari.com/en/article/1896637

Download Persian Version:

https://daneshyari.com/article/1896637

Daneshyari.com