

The theorem of Schur in the Minkowski plane

Rafael López
Departamento de Geometría y Topología, Universidad de Granada, 18071 Granada, Spain

ARTICLE INFO

Article history:

Received 5 April 2010
Accepted 8 October 2010
Available online 16 October 2010

MSC:

53A04
53B30
53C50

Keywords:

Minkowski plane
Curve
Curvature
Schur's comparison theorem

Abstract

We prove a Lorentzian analogue of the theorem of Schur for spacelike (or timelike) curves in the Minkowski plane.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

A classical theorem in differential geometry of curves in Euclidean space \mathbb{E}^{3} compares the lengths of the chords of two curves, one of them being a planar convex curve [1-3].

Theorem 1 (Schur). Let $\alpha_{1}, \alpha_{2}:[0, L] \rightarrow \mathbb{E}^{3}$ be two (sufficiently smooth) curves of length L parametrized by an arc length s. Suppose that α_{1} is a planar curve such that α_{1} together with the chord joining its endpoints bounds a convex set in the plane. Let d_{1} and d_{2} denote the lengths of the chords joining the endpoints of α_{1} and α_{2}, respectively. Assume that

$$
\kappa_{1}(s) \geq \kappa_{2}(s), \quad s \in[0, L] .
$$

Then

$$
d_{1} \leq d_{2}
$$

and the equality holds if and only if α_{1} and α_{2} are congruent.
In the words of S.S. Chern, "if an arc is 'stretched', the distance between its endpoints becomes longer" [2, p. 36]. The curvatures κ_{i} are assumed in the space sense, that is, non-negative by definition, even for plane curves. This result is known in the literature under the name Schur's theorem. Exactly, Schur [4] proved the result when both curvatures agree pointwise (based on ideas of an unpublished work of H.A. Schwarz in 1884). The proof in the general case is due to Schmidt [5]. Some generalizations and extensions can be seen in [6,7] and a historical account of this theorem appears in [7, p. 151]. When the curves are polygons, Schur's theorem is related with the so-called Cauchy's arm lemma [8,9].

In this work we present the Lorentzian version of Schur's theorem for planar curves in the Minkowski plane \mathbb{E}_{1}^{2}.

[^0]Theorem 2. Let $\alpha_{1}, \alpha_{2}:[0, L] \rightarrow \mathbb{E}_{1}^{2}$ be two (sufficiently smooth) spacelike curves of length L parametrized by the arc length s. Suppose that α_{1} together with the chord joining its endpoints bounds a convex set. Let d_{1} and d_{2} denote the lengths of the chords joining the endpoints of α_{1} and α_{2}, respectively. Assume that

$$
\kappa_{1}(s) \geq\left|\kappa_{2}(s)\right|, \quad s \in[0, L] .
$$

Then

$$
d_{1} \geq d_{2}
$$

and the equality holds if and only if α_{1} and α_{2} are congruent. The same result holds if both curves are timelike.
Here the length d_{i} of each chord is measured with the Lorentzian metric, that is, $d_{i}=\left|\alpha_{i}(L)-\alpha_{i}(0)\right|, i=1,2$.
We point out that Schur's theorem cannot be extended for space curves in the Minkowski three-dimensional space \mathbb{E}_{1}^{3}, even if both curvatures κ_{i} agree pointwise. We now present a variety of counterexamples. Assume that \mathbb{E}_{1}^{3} is the real vector space \mathbb{R}^{3} with the metric $(+,+,-)$. We consider the (planar) spacelike curves in \mathbb{E}_{1}^{3} given by

$$
\alpha_{1}(r ; s)=(r \cos (s / r), r \sin (s / r), 0), \quad \alpha_{2}(r ; s)=(0, r \sinh (s / r), r \cosh (s / r)),
$$

with $r>0$. Both curves are parametrized by the arc length s and the curvatures are $\kappa_{i}(r ; s)=1 / r$, for any $s, i=1$, 2 . Fix L. Then $d_{1}=d_{1}(r)=\left|\alpha_{1}(r ; L)-\alpha_{1}(r ; 0)\right|=r \sqrt{2(1-\cos (L / r))}$ and $d_{2}=d_{2}(r)=\left|\alpha_{2}(r ; L)-\alpha_{2}(r ; 0)\right|=$ $r \sqrt{2(\cosh (L / r)-1)}$.

- By taking the same value r in both curves, and for any $0<L<2 \pi r$, we have $\kappa_{1}(r ; s)=\kappa_{2}(r$; s) for any s and $d_{1}(r)<d_{2}(r)$.
- Let $0<L<\pi$. Then $\kappa_{1}(1 ; s)>\kappa_{2}(2 ; s)$ and $d_{1}(r)<d_{2}(r)$.
- For any $L>0, \kappa_{2}(1 ; s)>\kappa_{2}(2 ; s)$ and $d_{2}(1)>d_{2}(2)$.

This note is organized as follows. In Section 2 we present some preliminaries about the geometry of the Minkowski plane and we show Theorem 2. In Section 3 we present some applications of Schur's theorem.

2. Preliminaries and proof of the result

Let \mathbb{E}_{1}^{2} denote the Minkowski plane, that is, the real planar vector \mathbb{R}^{2} endowed with the metric $\langle\rangle=,\mathrm{d} x^{2}-\mathrm{d} y^{2}$, where (x, y) are the usual coordinates of \mathbb{R}^{2}. A vector $v \in \mathbb{E}_{1}^{2}$ is said to be spacelike if $\langle v, v\rangle>0$ or $v=0$, timelike if $\langle v, v\rangle<0$, and lightlike if $\langle v, v\rangle=0$ and $v \neq 0$. The length of a vector v is given by $|v|=\sqrt{|\langle v, v\rangle|}$. If $p, q \in \mathbb{E}_{1}^{2}$, we define the distance between p and q as $|p-q|$.

It is important to point out that, in contrast to what happens in Euclidean space, in the Minkowski ambient space we cannot define the angle between two vectors, except that both vectors are of timelike type. If $u, v \in \mathbb{E}_{1}^{2}$ are two timelike vectors, then $\langle u, v\rangle \neq 0$. In such a case, there is a Cauchy-Schwarz inequality given by

$$
|\langle u, v\rangle| \geq|u||v|
$$

and the equality holds if and only if u and v are two proportional vectors. In the case where $\langle u, v\rangle<0$, there exists a unique number $\theta \geq 0$ such that

$$
\langle u, v\rangle=-|u||v| \cosh (\theta)
$$

This number θ is called the hyperbolic angle between u and v.
Given a regular smooth curve $\alpha: I \subset \mathbb{R} \rightarrow \mathbb{E}_{1}^{2}$, we say that α is spacelike (resp. timelike) if $\alpha^{\prime}(t)$ is a spacelike (resp. timelike) vector for all $t \in I$, where $\alpha^{\prime}(t)=\mathrm{d} \alpha / \mathrm{d} t$. If α is a spacelike curve parametrized by $\alpha(t)=(x(t), y(t))$, then $x^{\prime}(t)^{2}-y^{\prime}(t)^{2}>0$, and so, $x^{\prime}(t) \neq 0$ for any t. This means that $x:=x(t): I \rightarrow \mathbb{R}$ is a local diffeomorphism, and so, $x: I \rightarrow J=x(I)$ is a diffeomorphism between interval of the real line \mathbb{R}. Then we can reparametrize α as the graph of a function $y=f(x), x \in J \subset \mathbb{R}$ and $1-f^{\prime}(x)^{2}>0, x \in J$. In a similar way, any timelike curve in \mathbb{E}_{1}^{2} is the graph of a function $x=g(y)$, with $1-g^{\prime}(y)^{2}>0, y \in J$. In conclusion, there are no closed spacelike (or timelike) curves in \mathbb{E}_{1}^{2}.

The following result will be useful in the proof of Theorem 2.
Lemma 3. Let $\alpha: I \rightarrow \mathbb{E}_{1}^{2}$ be a spacelike (resp. timelike) curve. Then for any $s_{1}, s_{2} \in I$, the vector $\alpha\left(s_{2}\right)-\alpha\left(s_{1}\right)$ is spacelike (resp. timelike).

Proof. We write α as the graph of a function f. By using the mean value theorem, the straight line joining $\alpha\left(s_{1}\right)$ and $\alpha\left(s_{2}\right)$ is parallel to other one that it is tangent at some point $s_{3} \in I$. Since $\alpha^{\prime}\left(s_{3}\right)$ is a spacelike (resp. timelike) vector, then the vector $\alpha\left(s_{2}\right)-\alpha\left(s_{1}\right)$ is also spacelike (resp. timelike).

https://daneshyari.com/en/article/1896642

Download Persian Version:

https://daneshyari.com/article/1896642

Daneshyari.com

[^0]: E-mail address: rcamino@ugr.es.
 0393-0440/\$ - see front matter © 2010 Elsevier B.V. All rights reserved.
 doi:10.1016/j.geomphys.2010.10.009

