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a b s t r a c t

We prove a Lorentzian analogue of the theorem of Schur for spacelike (or timelike) curves
in the Minkowski plane.
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1. Introduction

A classical theorem in differential geometry of curves in Euclidean space E3 compares the lengths of the chords of two
curves, one of them being a planar convex curve [1–3].

Theorem 1 (Schur). Let α1, α2 : [0, L] → E3 be two (sufficiently smooth) curves of length L parametrized by an arc length s.
Suppose that α1 is a planar curve such that α1 together with the chord joining its endpoints bounds a convex set in the plane. Let
d1 and d2 denote the lengths of the chords joining the endpoints of α1 and α2, respectively. Assume that

κ1(s) ≥ κ2(s), s ∈ [0, L].

Then

d1 ≤ d2,

and the equality holds if and only if α1 and α2 are congruent.

In the words of S.S. Chern, ‘‘if an arc is ‘stretched’, the distance between its endpoints becomes longer’’ [2, p. 36]. The
curvatures κi are assumed in the space sense, that is, non-negative by definition, even for plane curves. This result is known
in the literature under the name Schur’s theorem. Exactly, Schur [4] proved the result when both curvatures agree pointwise
(based on ideas of an unpublished work of H.A. Schwarz in 1884). The proof in the general case is due to Schmidt [5]. Some
generalizations and extensions can be seen in [6,7] and a historical account of this theorem appears in [7, p. 151]. When the
curves are polygons, Schur’s theorem is related with the so-called Cauchy’s arm lemma [8,9].

In this work we present the Lorentzian version of Schur’s theorem for planar curves in the Minkowski plane E2
1.
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Theorem 2. Let α1, α2 : [0, L] → E2
1 be two (sufficiently smooth) spacelike curves of length L parametrized by the arc length s.

Suppose that α1 together with the chord joining its endpoints bounds a convex set. Let d1 and d2 denote the lengths of the chords
joining the endpoints of α1 and α2, respectively. Assume that

κ1(s) ≥ |κ2(s)|, s ∈ [0, L].

Then

d1 ≥ d2,

and the equality holds if and only if α1 and α2 are congruent. The same result holds if both curves are timelike.

Here the length di of each chord is measured with the Lorentzian metric, that is, di = |αi(L) − αi(0)|, i = 1, 2.
We point out that Schur’s theorem cannot be extended for space curves in the Minkowski three-dimensional space E3

1,
even if both curvatures κi agree pointwise. We now present a variety of counterexamples. Assume that E3

1 is the real vector
space R3 with the metric (+, +, −). We consider the (planar) spacelike curves in E3

1 given by

α1(r; s) = (r cos(s/r), r sin(s/r), 0), α2(r; s) = (0, r sinh(s/r), r cosh(s/r)),

with r > 0. Both curves are parametrized by the arc length s and the curvatures are κi(r; s) = 1/r , for any s, i = 1, 2.
Fix L. Then d1 = d1(r) = |α1(r; L) − α1(r; 0)| = r

√
2(1 − cos(L/r)) and d2 = d2(r) = |α2(r; L) − α2(r; 0)| =

r
√
2(cosh(L/r) − 1).

• By taking the same value r in both curves, and for any 0 < L < 2πr , we have κ1(r; s) = κ2(r; s) for any s and
d1(r) < d2(r).

• Let 0 < L < π . Then κ1(1; s) > κ2(2; s) and d1(r) < d2(r).
• For any L > 0, κ2(1; s) > κ2(2; s) and d2(1) > d2(2).

This note is organized as follows. In Section 2we present some preliminaries about the geometry of theMinkowski plane
and we show Theorem 2. In Section 3 we present some applications of Schur’s theorem.

2. Preliminaries and proof of the result

Let E2
1 denote the Minkowski plane, that is, the real planar vector R2 endowed with the metric ⟨, ⟩ = dx2 − dy2, where

(x, y) are the usual coordinates of R2. A vector v ∈ E2
1 is said to be spacelike if ⟨v, v⟩ > 0 or v = 0, timelike if ⟨v, v⟩ < 0,

and lightlike if ⟨v, v⟩ = 0 and v ≠ 0. The length of a vector v is given by |v| =
√

|⟨v, v⟩|. If p, q ∈ E2
1, we define the distance

between p and q as |p − q|.
It is important to point out that, in contrast to what happens in Euclidean space, in the Minkowski ambient space we

cannot define the angle between two vectors, except that both vectors are of timelike type. If u, v ∈ E2
1 are two timelike

vectors, then ⟨u, v⟩ ≠ 0. In such a case, there is a Cauchy–Schwarz inequality given by

|⟨u, v⟩| ≥ |u| |v|

and the equality holds if and only if u and v are two proportional vectors. In the case where ⟨u, v⟩ < 0, there exists a unique
number θ ≥ 0 such that

⟨u, v⟩ = −|u| |v| cosh(θ).

This number θ is called the hyperbolic angle between u and v.
Given a regular smooth curve α : I ⊂ R → E2

1, we say that α is spacelike (resp. timelike) if α′(t) is a spacelike (resp.
timelike) vector for all t ∈ I , where α′(t) = dα/dt . If α is a spacelike curve parametrized by α(t) = (x(t), y(t)), then
x′(t)2 − y′(t)2 > 0, and so, x′(t) ≠ 0 for any t . This means that x := x(t) : I → R is a local diffeomorphism, and so,
x : I → J = x(I) is a diffeomorphism between interval of the real line R. Then we can reparametrize α as the graph of a
function y = f (x), x ∈ J ⊂ R and 1 − f ′(x)2 > 0, x ∈ J . In a similar way, any timelike curve in E2

1 is the graph of a function
x = g(y), with 1 − g ′(y)2 > 0, y ∈ J . In conclusion, there are no closed spacelike (or timelike) curves in E2

1.
The following result will be useful in the proof of Theorem 2.

Lemma 3. Let α : I → E2
1 be a spacelike (resp. timelike) curve. Then for any s1, s2 ∈ I , the vector α(s2) − α(s1) is spacelike

(resp. timelike).

Proof. Wewrite α as the graph of a function f . By using the mean value theorem, the straight line joining α(s1) and α(s2) is
parallel to other one that it is tangent at some point s3 ∈ I . Since α′(s3) is a spacelike (resp. timelike) vector, then the vector
α(s2) − α(s1) is also spacelike (resp. timelike). �
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