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a b s t r a c t

We study a hybrid model linking the quantum hydrodynamics equation with classical hydrodynamics
deriving the transmission conditions between the two PDE systems modeling the quantum and the
classical dynamics. These conditions are derived under the assumption of constant scaled temperature
and assuming a current jump across the interface between the classical and the quantum region. In
Section 2.2 we shall give a heuristic and physically plausible explanation of this assumption.

Because of this fact we produce not a weak solution on the whole device domain, but a piecewise
smooth solution.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

The recent growth of the microelectronic industry caused an
increasing interest in the mathematical model for semiconduc-
tor devices. Since the invention in 1947 of the first bipolar point-
contact transistor by Bardeen, Brattain, and Shockley (Nobel Prize
in Physics 1956), many different devices have been designed.
The ongoing progress of industrial semiconductor device tech-
nologies permits us to fabricate devices which employ quan-
tum phenomena in their operation e.g. resonant tunneling diodes,
quantum well lasers and nanowires. The drift–diffusion equation,
introduced by van Roosbroeck in 1950, does not take into account
these quantumeffects,whereas the Schrödinger equation perfectly
describes macroscopic variables like charge density and current
density; nevertheless the numerical treatment of this equation is
very expensive compared to the macroscopic model. Recently the
quantum hydrodynamic equation (QHD) has been used in order to
describe the modern quantum device. In one space dimension the
(scaled) equations for the charge density n and for the current den-
sity J read:

nt + Jx = 0

Jt +


J2

n
+ nT


x
− nVx − δ2 (n (ln n)xx)x = −

J
τ

.
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Generally these equations are coupled with Poisson’s equation:

λ2Vxx = n − C(x).

Formally, if δ = 0, we get the classical hydrodynamic model (HD).
For δ > 0, the quantum correction term

δ2 (n (ln n)xx)x = −2δ2n
√

nxx
√
n


x

(1)

is the so-called Bohm potential.

Remark 1. In our approach we shall ignore the collision terms
J/τ in the quantum part of the device, since the dynamics are
dominated by the tunnel phenomena, but we will keep it in the
classical one.

The QHD model is derived in different ways by the Wigner–
Boltzmann equation [1] and from the Schrödinger equation and
it has been analyzed from different points of view [2–10]. For
example in [2] the authors prove the existence and the uniqueness
of a steady state solution for QHD in the interval (0, 1) by using
a linear pressure functional whereas in [3] the authors show
that the QHD equation is equivalent to a non-standard integral
differential equation and solve it. In [4] the authors analyze amulti-
dimensional quantum hydrodynamical model for semiconductors
which is simplified under the assumption that the pressure P
is a known function of the density ρ. Generally the quantum
effects are important in a limited region, e.g. around the double
barrier in resonant tunneling diodes, whereas the rest of the
device is well described by classical models. For this reason the
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hybrid strategy has been introduced. In [5] the authors consider
a one-dimensional coupled stationary Schrödinger drift-diffusion
without collision, in order to link quantum zone and classical
zone supposing that the current density is continuous. In [6] the
author discusses the transmission conditions between a classical
transport model described by the Boltzmann equation and a
quantum model described by a set of Schrödinger equations. It is
known that, from the numerical point of view, the Schrödinger
equation is very difficult to treat and the drift–diffusion equations
do not provide good results in modeling modern semiconductor
devices.Mathematical analysis ofmodels described by the systems
of quantum hydrodynamics can be found in [7,8]. The analytical
methods to deal with heterogeneous domains are outlined in [9].

In this paper we will study a hybrid model linking the classical
hydrodynamic model and the quantum hydrodynamic one, in
order to get a method through which we can simplify the analysis
of themodern complex device. The advantage of this type ofmodel
is to use a quantum (more complicated) equation just in a reduced
zone of the device domain. For this reason, as a toy model, we
consider a device domain Ω = [−1, a], which is divided into a
classical zone Ωc = [−1, 0] and a quantum zone Ωq = [0, a].
In the physical case a ≪ 1, but we assume a = 1 in order to
simplify the mathematical calculations, this does not produce loss
of generality, since the final goal of this paper is the derivation of
a compatible set of transmission conditions that do not depend
on the quantum domain length. Moreover the assumption a = 1
will be justified in Section 2.1, where we show the scaling of the
equations. It is very important to remark that our model does not
produce a weak solution on the whole device-domain, but we only
obtain a piecewise solution. In other words we consider separately
quantum and classical systems in two different regions of our
device and we link them by a given set of transmission conditions.

Fromnowon the index qdefines the quantumquantitywhereas
the index c denotes the classical objects. In the first region we
work by using the classical hydrodynamic equation whereas in the
second one we will use the quantum equation.

Unfortunately information is not available at the interface
point, since it is impossible to take experimental measures in this
point. We use the following assumptions:

A1. The charge density n is a continuous function in Ω , and in
particular, at the interface point x = 0, i.e.:

nc(0) = nq(0). (2)

A2. The current density is constant in Ωc and in Ωq, where we
have, respectively, J = Jc and J = Jq, but J has a finite jump
at x = 0 namely

Jc ≠ Jq, (3)

therefore the continuity equation nt + Jx = 0 will be valid,
separately, in Ωc and in Ωq, but not in the whole Ω .

Here is the outline of the paper. Sections 2, 3, 5 and 6 contain the
core of the mathematical physical model and of the mathematical
tools. Specifically, in Section 2 we derive our model (by using
scaling arguments) and a consistent set of transmission conditions.

In Section 3 we prove the existence of solutions to the problem
J2q
nq

+ nqT


x

− nqVx − δ2 nq

ln nq


xx


x
= 0 (4)

coupled with the Poisson equation

λ2Vxx = n − C(x). (5)

Here n, V , Jc, Jq, T , λ are the electron density, classical electron
current density, quantum electron current density, electrical
potential, scaled electron temperature and scaled electrical

permeability, respectively. Moreover C(x) ∈ L2(Ω) is the
doping profile describing the fixed charge background ions in
the semiconductor crystal. We suppose Jc and Jq are (positive)
constants, respectively, in Ωc and Ωq. We consider (4) coupled
with the following set of boundary conditions

nq(0) = nc(0), nq(1) = n1, nqx(0) = nqx(−1) = 0,

Vq(1) + δ2nq,xx(1) = P, (6)

for a given Jq and for a fixed value of the constant P . Note that a
priori we do not know the correct value for nq(0), and, at the first
step, we work, using a certain value nq,0(0) of nq(0), such that

C−
≤ nq,0(0) ≤ C+ (7)

where C− and C+ will be defined in Theorem 4. Afterwards, when
the solution nq,0(x) is known, we compute Jc,1 using the potential
jump condition (24). Then in Section 5, we will solve the classical
hydrodynamical problem

J2c
nc

+ ncT


x
− ncVx = −

Jc
τc

, (8)

coupled with (5) and with

nc,1(−1) = 1, nc,x(0) = 0, Vc(0) = 0 (9)

where τc is the classical relaxation time. This allows us to calculate
nc,1(0), since by (2) we have

nc,1(0) = nq,1(0). (10)

Remark 2. We assume V (0) = 0, as condition for the electrical
potential, because this choice simplifies the calculation. From the
physical point of view it looksmore reasonable to assumeV (−1) =

V−1, we can ride out this problem assuming at every step (in our
numerical interaction) Vc,k(−1) = Vc,k − 1 such that Vc,k(0) = 0.

To close this iterative procedure we need to show that the map

Y : nc(0) → nq(0). (11)

has a fixed point.
Then, in Section 6 we will prove the existence of a fixed point

for Y by proving that the auxiliary map

Y : (J2c,k/n
2
c,k(0)) → (J2c,k+1/n

2
c,k+1(0)). (12)

is contractive and we need to show that this implies (11).
In Section 4 we discuss the subsonic solution of the classical

problem, whereas in Section 7 we test our model by using a simple
devices.

The model presented in this paper allows us to produce
numerical simulations that are quite realistic and very close to the
ones obtained in [2]. However, it is still important to go on with
modeling hypotheses that are less confined from the physical point
of view for the temperature that here is constant at the interface
point. We are going on with this analysis and some results for a
newmodel including this effect will be developed in a forthcoming
paper.
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