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a b s t r a c t

We analyze and classify equilibrium solutions of the one-dimensional thin film equation with no-flux
boundary conditions and in the presence of a spatially dependent external forcing. We prove theorems
that shed light on the nature of these equilibrium solutions, guarantee their validity, and describe how
they depend on the properties of the external forcing. We then apply these results to the reverse draining
of a one-dimensional magnetic soap film subject to an external non-uniform magnetic field. Numerical
simulations illustrate the convergence of the solutions towards equilibrium configurations. We then
present bifurcation diagrams for steady state solutions.We find thatmultiple stable equilibrium solutions
exist for fixed parameters, and uncover a rich bifurcation structure to these solutions, demonstrating the
complexity hidden in a relatively simple looking evolution equation. Finally, we provide a simulation
describing how numerical solutions traverse the bifurcation diagram, as the amplitude of the forcing is
slowly increased and then decreased.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

As a vertical soap film drains under gravity, a growing region of
very thin film, termed black film, forms at the top. This process has
been studied by a number of authors, and for a variety of reasons,
including the capture of film properties, and the understanding of
foams [1,2]. Much of the interest, with contributions dating as far
back as Newton [3], seems to arise from the complexity underlying
the process. The physical mechanisms behind a draining film have
been analyzed and put in concrete mathematical terms in more
recent times, largely beginningwith thework ofMysels et al. in the
1950s [4]. In particular, they introduced the concept of marginal
regeneration to explain the formation of thin regions of film along
the film borders. Since then, multiple authors have added to the
topic (e.g, [5–7]), both experimentally and theoretically.
The process of marginal regeneration, in particular the mech-

anisms responsible for the creation of black film at the film bor-
ders and the forces that drive the motion of the thin film once it
is created, is still somewhat controversial. For instance, in [7] the
authors suggest that the formation of thin film is a surface tension
effect, contrary to the original explanation given by Mysels et al.
In [8] the commonly held understanding that the thin film’s sub-
sequent motion is solely due to gravity is called into question. The
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dynamics of a draining film come from the competition between
viscous, capillary, and gravitational forces, along with surface ten-
sion effects and potentially complex interactions with the film
boundary. That some controversy remains today confirms that
these systems which may at first appear relatively simple are ac-
tually quite complex.
One way to better understand a draining film and to capture

the effects of different parameters is to add a controllable compo-
nent to the system. In [9], Elias et al. explored the physical prop-
erties of soap films by adding an aqueous suspension of magnetic
nanoparticles to an ordinary soap solution, thus forming a mag-
netic soap solution. This added magnetic dimension was treated
as a macroscopic force which they could control by subjecting the
film to varying magnetic fields. By placing a vertical draining film
in a uniform magnetic field, they found that they could speed up
or slow down the draining process based on the orientation of the
magnetic field. More recently, Moulton and Pelesko [8] presented
a similar experimental setup with a magnetic soap film, but with
a key difference: they subjected a draining film to much stronger
and non-uniform magnetic fields, by placing strong bar magnets
above the vertical film. With this setup, they found that with a
strong enough magnet, the film would flow upwards against grav-
ity, with thin black film forming at the bottom, a process termed
reverse draining.
In [8], a first model is suggested for the draining film under

the presence of a non-uniform magnetic field. Numerical sim-
ulations demonstrate qualitative agreement with experimental
observation, but a rigorous analysis of the system is not given. We
provide such an analysis in this paper.

0167-2789/$ – see front matter© 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.physd.2009.08.014

http://www.elsevier.com/locate/physd
http://www.elsevier.com/locate/physd
mailto:moulton@math.arizona.edu
mailto:lega@math.arizona.edu
http://dx.doi.org/10.1016/j.physd.2009.08.014


2154 D.E. Moulton, J. Lega / Physica D 238 (2009) 2153–2165

Fig. 1. Setup for the draining magnetic film system on which the model is based.
See text for details.

The system we study is depicted in Fig. 1. The film is described
by the function y = h(x, t), which is the half-thickness of the
film, assuming a reflection symmetry about the center line. The
full film is envisioned by extending the profile in the transverse
z direction — that is, the film is a sheet independent of z and
with reflectional symmetry about y = 0. The film is assumed to
be tangentially immobile, meaning that there is a zero tangential
velocity along the free surface. Themagnet is modeled by a current
loop placed directly above the film, with the film sitting on the axis
of the loop. The radius of the current loop is assumed to be much
larger than the width of the film in the transverse z direction. This
results in a non-uniform magnetic force acting only in the vertical
x direction to first order, and models the effect that magnetic
particles are primarily being pulled upwards, and that particles
closer to the magnet will feel a stronger pull. To be physically
realistic, a magnetic force acting solely in the vertical direction to
first order is only compatible with the assumption that the film
is uniform in the transverse z direction if the width of the film is
small compared to the radius of the current loop, which may or
may not agree with experiment. However, such a magnetic field
is necessary in order to formulate a two-dimensional first model,
which is certainly desirable from an analytical perspective. The
model exploits several other simplifications, such as the absence of
surfactant transport, in order to focus on the basic mechanism and
effect of the magnetic field. Moreover, only macroscopic effects of
the magnetic field are taken into account, and magnetic particle
concentration is not considered. Nevertheless, we will see that
this model has a very rich set of solutions, and is also capable of
capturing the reverse draining effect observed in experiments.
An evolution equation for the film can be derived using

lubrication theory, under the assumption of small aspect ratio of
the thickness of the film to its length. A comprehensive review of
lubrication theory and its application to various thin film systems
is found in [10]. For the setup studied here, the fluid is assumed
incompressible, with constant density and viscosity. Symmetry
conditions are employed at the center line y = 0, while the
assumption of a tangentially immobile film provides the boundary
condition of zero velocity in the vertical x direction at the free
surface. The effects of gravity, viscosity, and surface tension are
included; a magnetic body force term also appears as described
by the theory of ferrohydrodynamics [11]. Starting from the
Navier–Stokes equations, and following the standard procedures,
the following evolution equation for the film is obtained:

∂h
∂t
+
∂

∂x

(
h3

3
[σhxxx + 1+ λf (x)]

)
= 0. (1)

There are two dimensionless parameters: σ is an inverse Capillary
number characterizing surface tension, while λ is a ratio of the

relative forces of the magnetic field and gravity. Gravity has been
scaled to be the factor of 1, and

f (x) =
−3η2x

(1+ η2x2)4
(2)

is the magnetic forcing function for the non-uniform magnetic
field, where η is the ratio of the radius of the current loop to
the length of the film. For a detailed derivation of Eq. (1) and the
magnetic term described by Eq. (2), see [8]. Note that if we remove
the term λf (x), the remaining equation describes the evolution
of a thin film under the external action of gravity only. This
reduced equation, or some close variant of it, appears in a number
of previous studies. For instance, in [12], this exact equation is
studied, albeit with different boundary conditions than we will
employ here. Similarmodels are also developed in [13,14]; in these
studies the analysis is complicated by the addition of an equation
for surfactant transport coupled to the evolution equation. In [15],
the effect of an electric field on a thin film is explored — the
evolution equation presented takes a similar form, and is coupled
to an equation for the electric potential in the region of space
outside the film.
Eq. (1) falls under the category of fourth order degenerate diffu-

sion equations,which arise through the lubrication approximation.
Several papers have analyzed these types of equations in a general
setting, examples include [16,17]. The issues addressed in these
papers appear in the present work as well. Note however, that
in these studies the evolution equation analyzed is autonomous.
The addition of the non-autonomous function f (x) to the thin film
equation greatly changes the film behavior and also complicates
some standard techniques of analysis; the effect of this added func-
tion is a key element of our analysis.
The domain of the film is 0 ≤ x ≤ 1, where x = 0 corresponds

to the top of the film and the location of the current loop, and x = 1
is the bottom of the film. Note that the term inside the x derivative
is the velocity flux Q (x, t) over a horizontal cross section; that is

Q (x, t) =
h3

3
[σhxxx + 1+ λf (x)] .

There are several options for boundary conditions, depending on
the specifics of the experiment. In [8], experiments consist of a
film formed over an isolated rectangular frame. Hence, the natural
boundary conditions, which we use in this paper, are
h(0, t) = h(1, t) = 1, Q (0, t) = Q (1, t) = 0. (3)
Physically, the assumption is that the film is pinned to the frame
and there is no flux across the frame at either end. Note that the
no-flux condition implies a volume conservation.
Our objective in this paper is to analyze the system given by

Eq. (1) with boundary conditions (3). We begin in Section 2 with
a numerical investigation. A key characteristic that emerges is
that all solutions approach steady state equilibrium profiles. In
Section 3, we study analytically these equilibrium solutions. An
interesting aspect is that piecewise equilibrium solutions may be
constructed,which by their nature contain singularities in the third
derivative. We prove several theorems regarding the construction
and validity of equilibrium solutions, and how the shape of the
forcing function f (x) dictates the shape of equilibrium profiles.
This analysis is conducted for an arbitrary forcing function. In
Section 4, we numerically explore the convergence of different
solution profiles to a steady state profile as well as their stability.
Wealso illustrate the rich structure of the solution set, and consider
the evolution and bifurcation of solutions as the magnetic field
strength is altered.

2. Numerical solution

We begin with numerical simulations of the system (1)–(3),
using the method of lines. Motivated by the zero flux boundary
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