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Abstract

We consider a Cournot oligopoly game, where firms produce an homogenous good and the demand and cost func-
tions are nonlinear. These features make the classical best reply solution difficult to be obtained, even if players have full
information about their environment. We propose two different kinds of repeated games based on a lower degree of
rationality of the firms, on a reduced information set and reduced computational capabilities. The first adjustment
mechanism is called “Local Monopolistic Approximation” (LMA). First firms get the correct local estimate of the
demand function and then they use such estimate in a linear approximation of the demand function where the effects
of the competitors’ outputs are ignored. On the basis of this subjective demand function they solve their profit maxi-
mization problem. By using the second adjustment process, that belongs to a class of adaptive mechanisms known in
the literature as “Gradient Dynamics” (GD), firms do not solve any optimization problem, but they adjust their pro-
duction in the direction indicated by their (correct) estimate of the marginal profit. Both these repeated games may con-
verge to a Cournot—Nash equilibrium, i.e. to the equilibrium of the best reply dynamics. We compare the properties of
the two different dynamical systems that describe the time evolution of the oligopoly games under the two adjustment
mechanisms, and we analyze the conditions that lead to non-convergence and complex dynamic behaviors. The paper
extends the results of other authors that consider similar adjustment processes assuming linear cost functions or linear
demand functions.
© 2005 Elsevier Ltd. All rights reserved.

1. Introduction

The classical oligopoly games, and the associated notion of Nash equilibrium, are based on quite demanding notion
of rationality that includes assumptions on the available information set, on the firms’ capability of extracting correct
estimates from it and on the computational skills required to solve the optimization problems through which firms
make their decisions. Many authors claim that such assumptions are too strong and that real producers are not so
rational when they make their decisions. Moreover, as clearly stated by [3], the more refined the decision-making
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process, the more expensive it is likely to be. Therefore, especially when a (single) decision is not of crucial importance,
no more than an approximate solution may be justified. They call “optimally imperfect decisions” the decisions such
that “The calculation of the appropriate decision is simple, inexpensive, and well suited for frequent repetition”. This
point of view is also shared by other authors, see [30,11,12].

In this paper we consider an industry where # firms, indexed by i =1,...,n, produce an homogeneous good with
production levels ¢;, i =1,...,n, respectively. Strategic interactions arise because the price of the good depends on
the total output of the industry according to a given inverse demand function

p=f(0), )

where O = Y g; is the total output of the oligopoly market. If C{g;) denotes the cost function of producer i, then his
profit at time period ¢ is

mi(1) = p(1)g,(1) = Cilgi(1))- (2)

We assume that the market is characterized by the following nonlinear inverse demand function

p:a—b\/ﬁ7 3)

which has been used in other oligopoly models and in the experimental economics dealing with learning and expecta-
tions formation (see e.g. [26,2]). The cost functions are also nonlinear, that is

Ci=cip+cug; + Cizl]iz7 e 20, k=0,1,2. 4)

Indeed, quadratic cost functions are often met in applications. For example, in the modeling of renewable resources
exploitation, such as fisheries, cost functions without the linear term (i.e. functions of the form (4) with ¢, > 0 and
¢ = 0) are usually considered.! Negishi [25] considers cost functions of the form (4) and investigates the role of con-
vexity, i.e. the role of the coefficient of the term of second degree.

With these demand and cost functions the profit of firm i becomes

() = ¢,(1)(a — by/0) — (e + cugi(t) + cag; (1)). (5)

In a classical Cournot oligopoly game, producers are assumed to be price takers and, at each time ¢, they decide their
production levels by maximizing the expected profit

q,(t+1) = argmax (¢ + 1) = argmax[p*(t + 1)g; — Ci(g)]; (6)
4 4

where the expected price p*(t + 1) = f(q;,¢°,(t + 1)) and ¢° (¢ + 1) represents the output decisions of the other players
as expected by player i. Moreover, the inverse demand function is assumed to be known by all firms. Cournot [14] as-
sumes naive expectations, i.e. ¢°,(t + 1) = g_,(t), that is, each firm expects that the production of the other firms will
remain the same as in the current period.? This implies that the condition for solving the optimization problem (6) gives
implicit relations between productions at time ¢ and those at time z + 1. In the simplest (and lucky) case one can un-
iquely express gt + 1) as functions of g_(¢)

q:(t+1) = ri(g_i(t+1)), ()

where r; are called reaction functions, and (7) gives rise to a discrete-time dynamical system (Best Reply Dynamics).
Cournot [14] studied the properties of the best reply dynamics when both the demand and the cost functions are linear
getting also linear reaction functions. Other examples of explicit computation of the best reply dynamics are given in the
literature, see e.g. [27], where a nonlinear demand function is considered together with linear cost functions, [21,7],
where nonlinear cost functions are considered together with a linear demand function. In all these cases, the Nash equi-
libria correspond to the fixed points of the map (7), i.e. they are located at the intersections of the reaction curves.

In our case, considering the demand function (3) and the cost functions (4), the first order conditions for the opti-
mization problem (6) become

O _ (g _bai

cn—2cpq; =0 i=1,...n.

! In fisheries the most frequently used cost function is given by C(x) = y‘y where x is the quantity of fish harvested (production) when
a fish stock X is available. This cost function can be derived from a Cobb-Douglas-type “production function” with fishing effort
(labor) and fish biomass (capital) as production inputs (see [13,32,10]).

2 Other kinds of expectations mechanisms can be used, such as adaptive expectations, see e.g. [31,8].
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