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a b s t r a c t

The destabilization process from the static petal pattern to the fluctuating petal pattern in a liquid crystal
light valve with optical rotational feedback is investigated experimentally. When a spatial rotation of
π/6 is imposed on the feedback, the six-fold static petal pattern appears. At a threshold voltage of the
bifurcation, rotationally propagating patches arise on the petals. With the increase of applied voltage, the
motion of the patches becomes irregular and fluctuations of the pattern develop. By measuring the time
correlation function for the spatial wave numbers along the azimuthal direction in polar coordinates, it is
found that a half of the fundamental spatial mode relevant to the six-fold petal pattern plays an important
role in the bifurcation process. The development of fluctuations is also analyzed by the Karhunen–Loéve
decomposition in detail.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

In the field of nonlinear dynamics, self-organizing patterns in
liquid crystal systems have attracted a lot of attention during
recent years. In particular, owing to the richness of the patterns
that appear, self-organization and spatio-temporal dynamics in
a liquid crystal light valve (LCLV) with optical feedback have
received considerable interest in the last two decades. Starting
from the pioneering work of Akhmanov et al. [1–3], many kinds
of self-organized patterns in the LCLV have been investigated,
both theoretically and experimentally [4–10]. A number of topics
related to the mechanism of pattern formation in the LCLV
have been reviewed by several researchers [11–13], with the
LCLV often described as a Kerr-like medium, thus fitting in the
general theoretical framework of a Kerr medium with optical
feedback [14,15].
In the LCLV, a nematic liquid crystal and a photoconductor are

sandwiched by ITO-coated glass plates. For the reflective type of
LCLV, a dielectric mirror is coated on the liquid crystal side of
the photoconductor. The liquid crystal side (reading side) and the
photoconductor side (writing side) are optically isolated by the
dielectric mirror. Under no illumination on the photoconductor,
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the liquid crystal molecules are influenced by the anchoring force
and remain parallel to the glass plates because most of the applied
voltage drops across the photoconductor. On the other hand, when
the photoconductor is illuminated, themolecules tilt in accordance
with the intensity of the illumination and the applied voltage. Such
a molecular reorientation is called a Fréedericksz transition [16],
and it occurs above a threshold voltage that corresponds to the
electric field needed to overcome the restoring torque due to the
elastic coupling of the molecules.
When an optical feedback is imposed on the LCLV, the

Fréedericksz transition becomes subcritical and the system
becomes bistable, with different orientation states coexisting for
the same values of the applied voltages [17,18]. The bistable
property for the tilt angle of the liquid crystal director arises in
several voltage ranges [19]. In such bistable ranges of the voltage,
when nonlocal spatial effects are added in the optical feedback,
such as rotation of the backward image or diffraction over a free
propagation length, self-organized patterns appear [5,13]. The
pattern that appears depends on the type of feedback and on the
control parameters of the experiment, the main ones being the
voltage applied to the LCLV, the intensity of the input beam, the
initial orientation of the liquid crystal director with respect to the
input beam linear polarization, the rotation angle in the feedback
loop, and the free propagation length.
In the present paper, we focus our attention on the petal

patterns observed under a pure-interferential optical feedback
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(the free propagation length is put equal to zero thanks to a
self-imaging system), when spatial rotation is introduced in the
feedback loop [2–4,8]. When the feedback rotation angle ∆ is
commensurate with 2π , a static pattern consisting of N = π/∆
petals appears at the onset of the bistable voltage ranges. We
will not deal with the case of incommensurate rotation, for which
the petal pattern rotates with an angular velocity proportional
to the difference from the commensurate angle [2,20]. The
formation mechanism of the static petal pattern was theoretically
investigated by Adachihara and Faid [4]. By increasing the applied
voltage V , the static petal pattern becomes unstable at a threshold
voltage Vth, and the pattern starts to fluctuate both in space and
time. The fluctuations of the petal pattern increase with increasing
V . Ramazza et al. [8] analyzed the applied voltage dependence
of the spatial structure and the activated mode experimentally
and theoretically bymeasuring the spatial autocorrelation function
in polar coordinates. However, very little quantitative data are
available on the destabilization process of the static petal pattern
and the development of fluctuations.
In the present paper, we will investigate the destabilization

process of the static petal pattern by measuring the spatial power
spectrum and the autocorrelation functions in time. By adopting a
functional fitting for the autocorrelation function, wewill estimate
the decay rate of the fluctuations. Besides the normal type of
correlation function, we will also measure the time correlation
for the spatial modes relevant to the spatial structure of the
petal [21]. Since the petal pattern appears under the strong effect
of rotational feedback, it is expected that spatial modes relevant
to the rotational angle play an important role in the bifurcation
towards a fluctuating pattern. For the case of an N petal pattern,
the relevant modes can be identified as a spatial mode with wave
number N along the azimuthal direction and its harmonic modes.
By analyzing the time correlation for such specific modes, we will
identify the most relevant modes able to trigger the bifurcation
towards a chaotic behavior.
In addition to the correlation analyses, we will analyze the

fluctuations of the petal pattern by adopting the Karhunen–Loéve
(KL) decomposition [22,23]. The KL decomposition, which is
equivalent to the singular value decomposition and principal
component analysis, expands a sequence of patterns intomutually
uncorrelated sequences of patterns. The uncorrelated sequences
of patterns are ordered with respect to their energy. This is a
familiar technique in the field of image analysis. While the bases of
decomposition in image analyses, such as Fourier decomposition,
are fixed [e.g. sin( ) and cos( )] in general, the bases of KL
decomposition are not fixed but calculated from the observed
patterns.
By applying the KL decomposition on the fluctuating image

sequence, we can identify a small set of dominant modes that
contain most of the relevant information. Moreover, we evaluate
the global entropy, which is a measure of complexity for the
fluctuations. Recently, the KL decomposition has been applied to
analyze the dynamics of self-organized structures [24–26]. For
the pattern in the LCLV, Pastur et al. [27] have investigated the
destabilization process of a stripe pattern in the LCLV system by
using the KL decomposition.
The paper is organized as follows. In Section 2, we will briefly

describe the structure of the LCLV and the experimental setup. In
Section 3, we will define the power spectrum and the correlation
functions and then introduce the Karhunen–Loéve decomposition.
In Section 4, we will present the experimental results and discuss
the characteristic features of the fluctuations. Finally, in the last
section, we will summarize the results of the paper.

2. Experimental setup

The experimental system to observe the petal pattern under
optical feedback is schematically illustrated in Fig. 1. The LCLV used
in the experiment is a Hamamatsu PAL-SLM. A laser beam emitted
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Fig. 1. Optical system to observe the petal patterns.

from a He–Ne laser (Neoark model 35) is enlarged and collimated
by an objective O, a pinhole PH and a lens L1 (f = 250 mm).
The polarizer transmits the horizontal component of the beam. The
diameter of the diaphragm located in front of the LCLV is 10 mm.
In order to exploit themaximumoptical anisotropy (birefringence)
of the liquid crystal [28], the director angle is set π/4 from the
direction of the polarizer P.
The laser beam injected into the nematics is reflected back by

the dielectricmirror of the LCLV, and then is fed back to thewriting
side of the LCLV by the lenses L1, L2 (f = 250 mm), the beam-
splitter BS1 and the fiber bundle. Owing to the birefringence of the
nematics, the outgoing light from the reading side of the LCLV is
elliptically polarized. The phase shift between the ordinary and
the extraordinary rays, φ, depends on the inclined angle of the
nematics. As the analyzer A transmits only the vertical component
of the elliptically polarized light, the intensity of the writing light
Iw is written as [13]

Iw = R
{
e−γ
I0
2
(1− cosφ)

}
, (1)

where I0 represents the intensity of laser beam, γ is an effective
attenuation coefficient for the optical feedback, and R is the
rotational operator representing the fiber bundle rotation. In
the present optical system, the analyzer converts the phase
modulation introduced by the liquid crystal into an intensity
modulation in the feedback loop. The free end of the fiber bundle,
which is located at the focal plane of L2, is mounted on a precision
rotating stage. The feedback light is rotated by ∆ = π/6, which
leads to the appearance of the six-fold petal pattern in several
voltage ranges. To observe the feedback image, 5% of the feedback
light is sampled by a beam splitter BS2. A CCD camera and a frame
grabber card (Scion Corporation LG-3) capture successive T =
600 frames, with a frame rate ∆t = 0.04 s. The size of a single
image is 512 × 512 pixels. The intensity of image at each pixel is
digitized into 256 gray values. The observed images are analyzed
by an image processing software (ImageJ) and originally developed
programs. An example set of images of the six-fold petal pattern is
displayed in Fig. 2.
The applied voltage V , supplied from a synthesizer (NF

Corporation WF1944), was varied from 1.89 V to 2.25 V, which
is the second bistable regime after the Fréedericksz transition.
The frequency of the applied voltage, the rotation angle and the
intensity of laser beam were fixed at 1 kHz, π/6 and 50 µW/cm2,
respectively. Five runs of the same experiments were performed at
room temperature.

3. Analysis

3.1. Fourier analysis in polar coordinates

Since the static petal pattern has a radial symmetry, we have
analyzed all the images in polar coordinates. Thus, the observed
pattern in Cartesian coordinates I(x, y, t) is converted into polar
coordinates I(r, θ, t), and the space–time plot of the image is
calculated at specific values of r .
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