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Gromov–Witten invariants of Fano hypersurfaces, revisited
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Abstract

The goal of this paper is to give an efficient computation of the genus zero three-point Gromov–Witten invariants of Fano
hypersurfaces, starting from the Picard–Fuchs equation. This simplifies and to some extent explains the original computations of
Jinzenji. The method involves solving a gauge-theoretic differential equation, and our main result is that this equation has a unique
solution.
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1. Introduction

Gromov–Witten invariants compute “numbers of pseudo-holomorphic curves” in a symplectic manifold. They are
rigorously defined as integrals on moduli spaces of stable maps. Therefore it is difficult to calculate Gromov–Witten
invariants directly from the definition.

An alternative method of computation comes from mirror symmetry. Although the mirror symmetry phenomenon
is not yet completely understood, it suggests that Gromov–Witten invariants can be computed in terms of
coefficients of power series solutions of certain differential equations. The most well known example is the quintic
hypersurface in CP4; this is a Calabi–Yau 3-fold. Fano hypersurfaces are more elementary from the point of view
of Gromov–Witten invariants, and it was established by Givental that certain Gromov–Witten invariants in this case
are determined by the “Picard–Fuchs equation”. The Picard–Fuchs equation of the quintic hypersurfaces in CP4 is(
∂4

− 5et (5∂ + 4)(5∂ + 3)(5∂ + 2)(5∂ + 1)
)
ψ(t) = 0.

A hypersurface Mk
N of degree k in CP N−1 is Fano if and only if N > k, and the Picard–Fuchs equation is(

∂N−1
− ket (k∂ + (k − 1)) . . . (k∂ + 2)(k∂ + 1)

)
ψ(t) = 0.

Before Givental’s work, partial results on the quantum cohomology of Fano hypersurfaces had been obtained by
Collino and Jinzenji [4] and Beauville [2]. Subsequently, Jinzenji [8] observed that a simple ansatz leads to the correct
Gromov–Witten invariants and he obtained complicated but explicit formulae from this ansatz.
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The aim of this paper is to calculate the three-point Gromov–Witten invariants of a Fano hypersurface by using
the method of [1,7] primarily when N − k ≥ 2 (which we assume unless stated otherwise). In this method, the
flat connection associated with the D-module D/(PF) is “normalized” by applying the Birkhoff factorization. We
shall show (as a consequence of Givental’s work) that this method produces the correct three-point Gromov–Witten
invariants.

The algorithm for the computation of three-point Gromov–Witten invariants from the quantum differential
equations was introduced in [7], and applied to flag manifolds in [1], and our treatment of hypersurfaces is broadly
similar. However, there are some special features in this case which make a separate discussion worthwhile. First,
the differential equations in this case are o.d.e., rather than p.d.e., hence the integrability condition plays no role.
Second, the o.d.e. which appears in the Birkhoff factorization can be integrated very explicitly, and this leads to
purely algebraic formulae (whereas the algorithm in [1] required the solution of large systems of p.d.e.).

Computationally, our method is similar to Jinzenji’s method, but considerably simpler. In Section 2 we review the
cohomology algebra of hypersurfaces of the complex projective spaces. In Section 3 we discuss the Gromov–Witten
invariants and the Dubrovin connection. The quantum differential system and Jinzenji’s method are discussed in
Section 4. In Section 5, we explain the loop group method and we compute a flat connection from a D-module which
is related to the quantum differential system. In Section 6, we discuss relations between families of connection 1-forms
and D-modules. The “adapted” gauge group is the most important object. In Section 7, we explain Jinzenji’s results
from our viewpoint and prove that our results agree with Jinzenji’s results. We also prove that our results produce the
Gromov–Witten invariants.

2. Hypersurfaces in the complex projective spaces

If we consider the hyperplane

H =

{
[z0, . . . , zN−1] ∈ CP N−1

| z0 = 0
}

of CP N−1 as a smooth divisor, the line bundle O(1) over CP N−1 can be obtained from the divisor in the general
theory of complex geometry. The line bundle O(1) is called the hyperplane bundle. The first Chern class b of the
hyperplane bundle O(1) generates the cohomology algebra H∗(CP N−1

; C) of CP N−1. The tensor product of k
copies of the line bundle O(1) is denoted by O(k). The zero locus of a holomorphic section of the line bundle O(k)
is called a hypersurface of degree k in CP N−1 and the zero locus is denoted by Mk

N .
The C-linear space H ](Mk

N ) of all pullbacks of cohomology classes via the inclusion map ι : Mk
N → CP N−1

is a subalgebra of the cohomology algebra of Mk
N . The subalgebra H ](Mk

N ) is generated by the pullback of the
cohomology class b. The pullback is also denoted by b. Let bi (i = 1, . . . , N − 2) be a cup product of i copies of b
and b0 = 1. The vectors b0, . . . , bN−2 form a C-basis of the subalgebra H ](Mk

N ).
We assume that N ≥ 5. Under this assumption, the Lefschetz theorem implies that the homomorphism ι∗ :

H2(Mk
N ; Z) → H2(CP N−1

; Z) = Z[CP1
] induced by the inclusion is an isomorphism. Taking the generator A

of H2(Mk
N ; Z) with ι∗ A = [CP1

], we identify the second homology group H2(Mk
N ; Z) with Z via the isomorphism.

There are two nondegenerate bilinear pairings over C; one is the Kronecker pairing (the usual pairing)

〈 , 〉 : H2(Mk
N ; C)⊗ H2(M

k
N ; C) → C; 〈x, d〉 =

∫
d

x

and the other is the Poincaré pairing

( , ) : H ](Mk
N )⊗ H ](Mk

N ) → C; (x, y) =

∫
Mk

N

x ∪ y.

Note that gµν := (bµ, bν) = kδµ+ν
N−2.

3. Gromov–Witten invariants

The subalgebra H ](Mk
N ) is a Frobenius algebra in the following sense:
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