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a b s t r a c t

In this paper, we present a new phase-field model including combined effects of edge diffusion, the
Ehrlich–Schwoebel barrier, deposition and desorption to simulate epitaxial growth. A new free energy
function together with a correction to the initial phase variable profile is used to efficiently capture
the morphological evolution when a large deposition flux is imposed. A formal matched asymptotic
analysis is performed to show the reduction of the phase-field model to the classical sharp interface
Burton–Cabrera–Frankmodel for step flowwhen the interfacial thickness vanishes. The phase-fieldmodel
is solved by a semi-implicit finite difference scheme, and adaptive block-structured Cartesian meshes are
used to dramatically increase the efficiency of the solver. The numerical scheme is used to investigate the
evolution of perturbed circularly shaped small islands. The effect of edge diffusion is investigated together
with the Ehrlich–Schwoebel barrier. We also investigate the linear and nonlinear regimes of a step
meandering instability.We reproduce the predicted scaling law for the growth of themeander amplitude,
which was based on an analysis of a long wavelength regime. New nonlinear behavior is observed when
themeanderwavelength is comparable to the terracewidth. In particular, a previously unobserved regime
of coarsening dynamics is found to occur when the meander wavelength is comparable to the terrace
width.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Thin film growth through for example, molecular beam
epitaxy (MBE), liquid phase epitaxy (LPE) and chemical vapor
deposition (CVD) is a modern technology of growing single
crystals that inherit atomic structures from a substrate [1].
Epitaxial growth produces almost defect-free, high quality crystals,
which have wide ranges of applications in electronic, optical and
magnetic materials. For example, epitaxial growth is useful in
the manufacture of reflective or anti-reflective coatings for optics,
and is important in the fabrication of layers of insulators and
semiconductors for integrated circuits (e.g. see [2]). Moreover,
epitaxial growth can be used to create structures on much smaller
length scales through self-assembly, that is the nanostructure
emerges spontaneously, rather than structures produced by top-
down methods. Examples include quantum dots and quantum
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wires which have very good transport and optical properties,
and therefore have specific importance in the development of
diode lasers, amplifiers, biological sensors and etc. (e.g. see [3,4]).
The fundamental problem in epitaxial growth is to understand
growth processes so that one can develop techniques to control
nanostructure formation and promote self-assembly of spatially
ordered nanostructures.

During epitaxial growth, physical and chemical processes occur
at widely varying length and time scales. Examples of such
phenomena include, the chemical interaction of the film and
substrate; the heteroepitaxial misfit between substrate and film;
the formation of defects, such as dislocations and grain boundaries;
the extreme elastic heterogeneity of the system; the strong
elastic and surface anisotropies; interface kinetic effects; epilayer
deposition; edge diffusion; substrate topographical patterning
and subsurface implant patterning. These processes interact and
compete to form complex thin film morphologies, such as step
structures, and faceted quantum dots and wires. Given such a
complex multi-scale problem, modeling epitaxial growth presents
an enormous challenge to mathematicians, theoretical physicists
and materials scientists. Since the macroscopic evolution of the
growing film is directly related to the movements of adatoms
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Fig. 1. Schematic of Ehrlich–Schwoebel barrier. An adatom detaching from a step
edge is experiencing an additional energy∆Es [30].

(absorbed atoms) on surfaces and their various interactions, it
is appealing to use atomic scale simulations for a theoretical
description of epitaxial growth (e.g., ab-initio [5] molecular
dynamics [6] and kinetic Monte Carlo [7–9] models). However,
the length and time scales that can be achieved by the atomic
scale simulations are limited, thus semi-discrete step-flowmodels
(e.g., [10–15]) and continuum models (e.g., [16–27]) may be used
in order to study various applications at larger scales.

Below the roughening temperature, steps as long-lived surface
defects are suitable as a basis for the description of the surface
morphology. Atomic steps separate exposed lattice terraces that
differ in height by a single lattice spacing and provide the kink
sites at which new atoms are incorporated into the crystal. The
growth of a crystal surface can thus be reduced to the advancement
of existing steps, the nucleation and growth of new closed step
loops (i.e., atomic height islands), the annihilation of steps by
the merging of islands and terraces. Burton, Cabrera and Frank
(BCF) [28] first introduced a semi-discrete model, in which the
growth direction is discrete but the lateral direction is continuous,
to describe the diffusion of adatoms and themotion of steps during
epitaxial growth of thin films. The BCF model, supplemented with
later modifications and extensions, has been used to study the
stability of step trains and islands.

A fundamental investigation to predict the meandering wave-
length for the step meandering instability using linear stability
analysis, was performed by Bales and Zangwill [10]. Their analysis
shows that stepmeandering is an instability that may arise as a re-
sult of a terrace Ehrlich–Schwoebel barrier, see Fig. 1, which char-
acterizes the preference of adatoms to attach to an ascending step,
i.e., k+ < k− in Eqs. (2) and (3). More recently, following Avignon
and Chakraverty [13], Mullins and Sekerka [14] and Li et al. [15], a
comprehensive morphological stability analysis of small circularly
shaped islands was performed by Hu et al. in [29]. In this work, Hu
et al. demonstrated the existence of a naturally stabilizing radius
of the growing island, so that beyond this radius, the growth is al-
ways stable. Up to this radius, taking fluxes larger than a critical
flux results in unstable growth. The explicit form of the dispersion
relation is given in a supplementary document. Hu et al. also sug-
gested a way of controlling the shape of an island using the de-
position flux and far-field flux as control parameters. However, in
thenonlinear regime,mathematicalmodeling and efficient numer-
ical algorithms are essential and it remains to determine whether
shape control may be achieved in the nonlinear regime.

In this paper, a new phase-field model for step flow accounting
for Ehrlich–Schwoebel barrier, edge diffusion, a far-field flux,
deposition and desorption, is presented and used to investigate
instabilities during epitaxial growth. To accurately and efficiently
capture the dynamics when the deposition flux is large, we
propose a different free energy function from that used by Rätz

et al. [31] andOtto et al. [32]. An analysis usingmatched asymptotic
expansions is performed to show that the phase-field model
reduces to classical sharp interface models of BCF type when the
interfacial thickness vanishes. Advantages of using a phase-field
approach include the automatic capture of topological changes
such as island formation, coalescence and coarsening. In addition,
other physical effects such as nucleation and elastic interactions
may be included. Previously, front tracking methods have been
used to study the combined effects of edge diffusion and the
Ehrlich–Schwoebel during island growth [33–35]. In phase field
simulations [36,37] the edge diffusion term is typically neglected.
Only in [2] was this effect considered, however attachment and
detachment processes were neglected. In [38], a level-set method
was used, where the edge diffusion term in the normal velocity
was approximated by the deviation of the curvature from the
averaged curvature. But none of these methods considered the
combined effects of edge diffusion, the Ehrlich–Schwoebel barrier
and desorption.

Moreover, to demonstrate the versatility of the proposed
phase-field model, we also investigate the linear and nonlinear
regimes for the step trains concentrating on the step meandering
instability. A similar study has been performed by Haußer and
Voigt [39] in which a front tracking method based on linear
adaptive finite elements is used. In this work, we confirm some
of their nonlinear results and identify a new regime of coarsening
with different sets of parameters. In particular, we reproduce the
predicted scaling law for the growth of the meander amplitude,
which was based on an analysis of a long wavelength regime
[40–42]. New nonlinear behavior is observed when the meander
wavelength is comparable to the terrace width.

This paper is organized as follows: In Section 2, we describe
the BCF model. In Section 3, the new phase-field model is
presented. In Section 4, we briefly discuss the numerical solution
of the phase-field model. In Section 5, we present and discuss
our numerical results applied on both island dynamics and step
trains. We give some concluding remarks and suggest some future
work in Section 6. In Appendix A, a formal matched asymptotic
analysis is performed to show the reduction of the phase-field
model to the classical sharp interface BCF model for step flow
when the interfacial thickness vanishes. The computation of the
surface Laplacian is outlined in Appendix B. We present the initial
condition used in the simulation of the growth under a constant
flux (Section 5.1.1) in Appendix C. In Appendix D, the dispersion as
appeared in [10] is presented. A supplementary document contains
details of the linear stability analysis.

2. The BCF model

2.1. The BCF model for island dynamics

We consider a domain Ω on a plane containing a sequence
of steps and terraces. To model island dynamics, the steps are
described by closed curves Γi, which divide Ω into terraces Ωi
where i = 0, . . . ,N denotes the discrete height of the layers, cf.
Fig. 2.

Let ρi = ρi(x, y, t) be the adatom concentration on a terraceΩi,
with i = 0, . . . ,N . Then, the BCF model [28] is

∂tρi − ∇ · (D∇ρi) = F − τ−1ρi inΩi, (1)

where D is the diffusion constant, F is the deposition flux rate
and τ−1 is the desorption rate. At the step edges Γi, the adatom
concentration satisfies the kinetic boundary conditions

−D∇ρi · ni = k+


ρi − ρ∗ (1 + σκi)


on Γi, (2)

D∇ρi−1 · ni = k−


ρi−1 − ρ∗ (1 + σκi)


on Γi, (3)
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