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a b s t r a c t

Using a multi-scaled, chaotic flow known as the KS model of turbulence [J.C.H. Fung, J.C.R. Hunt, A.
Malik, R.J. Perkins, Kinematic simulation of homogeneous turbulence by unsteady random fourier modes,
J. Fluid Mech. 236 (1992) 281–318], we investigate the dependence of Lyapunov exponents on various
characteristics of the flow. We show that the KS model yields a power law relation between the Reynolds
number and the maximum Lyapunov exponent, which is similar to that for a turbulent flow with the
same energy spectrum. Our results show that the Lyapunov exponents are sensitive to the advection of
small eddies by large eddies, which can be explained by considering the Lagrangian correlation time of the
smallest scales. We also relate the number of stagnation points within a flow to the maximum Lyapunov
exponent, and suggest a linear dependence between the two characteristics.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Measures of stretching, such as the Lyapunov exponent,
are important tools for understanding the nature of dynamical
systems. For example, the maximum Lyapunov exponent can
provide information about the complexity of an attractor via the
Kaplan–Yorke dimension [6], or the rate of loss of information in
the system [16]. The use of Lyapunov exponents in turbulent flows
is far too great to list here; examples range from probing the onset
of turbulence [3], to detecting inhomogeneity in hydromagnetic
convection [9]. Another interesting application arises in dynamo
theory; it was shown [15] that Lyapunov exponents provide an
upper bound for the growth rate of a fast dynamo, and also a non-
trivial combination of Lyapunov exponents gives an exact growth
rate for the small scale turbulent dynamo [5].
In this work we use a model turbulent flow, known as the

Kinematic Simulation (KS) model, that has been primarily used as
a Lagrangian model of turbulence [7,8]. An important feature of
KS is that it allows full control of the energy spectrum; moreover,
its simple analytic structure means that numerical differentiation
is not required in calculating the Lyapunov exponents. The KS
model has been shown to be in good agreement with results
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obtained from direct numerical simulations (DNS) of turbulent
flows, particularly with respect to Lagrangian statistics such
as two-particle dispersion [8,10,11]. The use of the model is
spreading rapidly to many other areas such as aeroacoustics
and biomechanics. This flow has also been shown to be a
hydromagnetic dynamo [17]. Motivated by the success of the KS
model and its applications in magnetohydrodynamics, our aim is
to check the agreement between the model and turbulent flows
with respect to Lyapunov exponents. It has been shown that the
KS model exhibits Lagrangian chaos [8,10]; we shall quantify this
feature using the largest Lyapunov exponent.

2. The velocity field

The KS model prescribes the flow velocity at a position x and
time t through the summation of Fourier modes with randomly
chosen parameters. These modes are mutually independent,
therefore the advection of small eddies by large eddies is not
included in the model. More precisely, the velocity field is
prescribed to be [11]

u(x, t) =
N∑
n=1

(An × kn cosψn + Bn × kn sinψn) , (1)

where ψn = kn · x + ωnt and N is the number of modes. The
unit vectors k̂n are chosen randomly, and kn = knk̂n where kn is
the wavenumber of the nth mode. The construction of An and Bn,
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Fig. 1. (a) The energy spectrum, E(k), showing the imposed p = 5/3 slope, as obtained by Fourier transform of Eq. (1) with N = 20, k1 = 10 and kN = 400. (b) Slice in the
z plane of the vorticity field generated by taking curl of the velocity field from (a), lighter shading indicates higher vorticity. Velocity vectors are shown in white.

which are time independent, is explained in the Appendix. Even
though the parameters of the flow are chosen randomly, they do
not necessarily change with time, so the flow is not necessarily
random. We adopt a normalised energy spectrum of the KS flow
E(k), which is a modification of the von Kármán energy spectrum,

E(k) = k4(1+ k2)−(2+p/2)e−1/2(k/kN )
2
, (2)

which reduces to E(k) ∝ k−p in the inertial range 1 � k � kN ,
with k = 1 at the integral scale; p = 5/3 produces the Kolmogorov
spectrum. As mentioned previously, a useful feature of the KS
model is the ability to vary the slope p in the inertial range. The
flow is incompressible and time dependent; the frequency of the
nth mode, ωn is inversely proportional to its turnover time,

ωn =

√
k3nE(kn). (3)

It is convenient to write the unit vector k̂n as

k̂n =


√
1− ζ 2n cos θn√
1− ζ 2n sin θn

ζn

 , (4)

where, θn ∈ [0, 2π) and ζn ∈ [−1, 1], are uniformly distributed
random numbers, to ensure that k̂n are isotropically distributed.
With

kn = k1

(
kN
k1

)(n−1)/(N−1)
, (5)

the effective Reynolds number is introduced using the requirement
that the dissipation and eddy turnover times are equal to each
other at k = kN ,

Re = (kN/k1)(p+1)/2. (6)

Since the maximum value of E(k) and the integral scale remain
unchanged in themodels discussed here, any variation in Re can be
thought to be caused by changes in the fluid viscosity. Fig. 1 shows
the energy spectrum of the KS flow, obtained numerically after fast
Fourier transforming u calculated from Eq. (1) on a 1283 mesh. We
also show a slice, in the z plane, of the corresponding vorticity field,
with velocity vectors.

3. The Lyapunov exponents

To obtain the spectrum of Lyapunov exponents, λi, we measure
the average rates of exponential divergence of nearby fluid particle
trajectories. If the system is chaotic, at least one Lyapunov
exponent is positive. The procedure to calculate the Lyapunov
exponents consists of monitoring the evolution of an infinitesimal
fluid sphere moving with the flow. The sphere, deformed by the
flow, rapidly becomes an ellipsoid. Then the Lyapunov exponents
are defined as

λi = lim
t→+∞

1
t
log2

pi(t)
pi(0)

, (7)

where pi(t) is the ellipsoid’s ith principal axis, and i = 1, 2, 3.
Another feature of the KS flow is that it is time reversible
(unlike ‘real’ turbulence), therefore the second Lyapunov exponent
vanishes [2,1]. We now consider two remaining exponents, which
must have opposite signs, λ1 = −λ3, since the flow is incom-
pressible (∇ · u = 0), the sum of the Lyapunov exponents must be
zero. Hence we only need to calculate one exponent, λ = max(λi).
Following Wolf et al. [18], consider a sphere whose centre, at x0,
moves along a trajectory defined by

d
dt

x0(t) = u(x0, t), (8)

with u obtained from Eq. (1). As the sphere follows a trajectory in
the flow, its shape is deformed to an ellipsoid by stretching and
compression. To the linear approximation in the sphere radius η,
x0 remains the centre of the deformed ellipsoid. The positions of
the points on the surface of the sphere η = x− x0, where x0 is the
position of the centre of the ellipsoid, obey the linearised equations
of motion
d
dt
ηi(t) = Dijηj, (9)

where Dij = ∂ui/∂xj and the summation convention is assumed.
We integrate Eqs. (8) and (9) numerically, normalising η at regular
intervals as to keep the linearisation valid. We then take the
temporal average of the magnitude of η to recover the maximum
Lyapunov exponent. Finally, we average the results over 500
particles to improve the statistics. Since detailed behavior of λ can
vary significantly between different realisations of the flow, we
further take an ensemble average over 50 different realisations
of the KS model with the same non-random parameters. The
results of one such run are shown in Fig. 2. Before beginning
the simulations, the code was tested by computing Lyapunov
exponents for some well known chaotic flows [13].



Download	English	Version:

https://daneshyari.com/en/article/1897023

Download	Persian	Version:

https://daneshyari.com/article/1897023

Daneshyari.com

https://daneshyari.com/en/article/1897023
https://daneshyari.com/article/1897023
https://daneshyari.com/

