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a b s t r a c t

We study quasi-periodic tori under a normal-internal resonance, possibly withmultiple eigenvalues. Two
non-degeneracy conditions play a role. The first of these generalizes invertibility of the Floquetmatrix and
prevents drift of the lower dimensional torus. The second condition involves a Kolmogorov-like variation
of the internal frequencies and simultaneously versality of the Floquet matrix unfolding. We focus on the
reversible setting, but our results carry over to the Hamiltonian and dissipative contexts.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Persistence results for quasi-periodicmotionswere first proved
for maximal tori in Hamiltonian systems and became known
as Kolmogorov–Arnol’d–Moser (KAM) theory. In [31] this was
extended to lower dimensional tori and to other contexts like
volume preserving and reversible systems. The rôle of the
‘modifying terms’ in terms of system parameters was clarified
in [14,24] and the Rüssmann condition [13,35] allows one to
subsequently reduce the high number of parameters to the bare
minimum.
These results yield what is called quasi-periodic (or normal

linear) stability, i.e. families of invariant tori persist under suffi-
ciently small perturbations when restricted to certain (measure-
theoretically large) Cantor sets. The theorems in [13] make the
crucial assumption that all eigenvalues of the matrix Ω describ-
ing the normal linear behavior be simple. This implies in partic-
ular that detΩ 6= 0 (except for the dissipative case and the
high-dimensional volume preserving case, where this condition is
explicitly added). Multiple resonances are admitted in [11,17,22]
and the aim of the present paper is to admit zero eigenvalueswith-
out weakening the conclusion of quasi-periodic stability.
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1.1. Setting and results

We work on the phase space M = Tn × Rm × R2p, where
Tn = (R/2πZ)n is the n-torus on which we use coordinates x =
(x1, . . . , xn)(mod 2π), while on Rm and R2p we use respectively
y = (y1, . . . , ym) and z = (z1, . . . , z2p). In such coordinates a
vector field onM takes the form

ẋ = f (x, y, z), ẏ = g(x, y, z), ż = h(x, y, z),

or in vector field notation:

X(x, y, z) = f (x, y, z)∂x + g(x, y, z)∂y + h(x, y, z)∂z . (1.1)

We assume that the vector field X depends analytically on all
variables, including possible parameterswhichwe suppress for the
moment; referring to [14,24,33] we note that our results remain
valid when ‘analyticity’ is replaced by ‘a sufficiently high degree
of differentiability’. An invariant torus T of a vector field X is
called parallel if a smooth conjugation exists of the restriction
X |T with a constant vector field ẋ = ω on Tn. The vector
ω = (ω1, ω2, . . . , xn) ∈ Rn is the (internal) frequency vector of
T . The parallel torus is quasi-periodic when the frequencies are
independent over the rationals.
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We are concerned with persistence of quasi-periodic tori under
small perturbations, and to fix thoughts we concentrate1 on the
reversible setting. To define reversibilitywe consider an involution
(i.e. G2 = I)

G : M −→ M, (x, y, z) 7→ (−x, y, Rz), (1.2)

with R ∈ GL(2p,R) a linear involution on R2p such that

dim Fix(R) = dim
{
z ∈ R2p | Rz = z

}
= p.

The vector field X is then called G-reversible (or reversible for
short) if

G∗(X) = −X .

Using (1.1) this reversibility condition takes the explicit form

f (−x, y, Rz) = f (x, y, z),
g(−x, y, Rz) = −g(x, y, z),
h(−x, y, Rz) = −Rh(x, y, z),

valid for all (x, y, z) ∈ M .
Following [12–14,24] the vector field X is called integrable if it

is equivariant with respect to the group action

Tn ×M −→ M, (ξ , (x, y, z)) 7→ (ξ + x, y, z)

of Tn onM , or in other words, if the functions f , g and h in (1.1) are
independent of the x-variable(s). Such an integrable vector field

X(x, y, z) = f (y, z)∂x + g(y, z)∂y + h(y, z)∂z (1.3)

is reversible if

f (y, Rz) = f (y, z), g(y, Rz) = −g(y, z) and
h(y, Rz) = −Rh(y, z) (1.4)

for all (y, z) ∈ Rm × R2p; this implies g(y, z) = 0 for all (y, z) ∈
Rm × Fix(R). In case h(0, 0) = 0 the2 n-torus T0 = Tn × {0} × {0}
is invariant under the flow of the vector field X . The normal linear
part N(X) of (1.4) at T0 is given by

N(X)(x, y, z) = ω∂x +Ωz ∂z, (1.5)

with

ω = f (0, 0) and Ω = Dzh(0, 0).

We denote the subspace of infinitesimally reversible linear
operators on R2p by gl−(2p;R) and by gl+(2p;R) the subspace of
all R-equivariant linear operators on R2p, i.e.

gl±(2p;R) = {Ω ∈ gl(2p;R) | ΩR = ±RΩ}.

In order to define the non-degeneracy of (1.3) at the invariant torus
T0 we consider the subspaces

X±Glin =
{
ω∂x +Ωz∂z | ω ∈ Rn,Ω ∈ gl±(2p;R)

}
of the spaces X−G of all G-reversible vector fields on M and X+G

of all G-equivariant vector fields, satisfying G∗(X) = +X . For X ∈
X−G the adjoint operator

adN(X) : X −→ X, Y 7→ [N(X), Y ]

mapsX±G intoX∓G; a similar statement is true forX±Glin .

1 We give explicit formulations for reversible vector fields, but the results remain
valid for e.g. dissipative, Hamiltonian or volume-preserving systems (vector fields
and maps), where equivariance is also optional.
2 Often one has a whole family Ty = Tn × {y} × {0} of invariant tori. While we
are especially interested in bifurcations, the variable y will still act as a parameter,
now unfolding the bifurcation scenario.

Our interest concerns purely G-reversible vector fields, and
G-reversible vector fields that are furthermore equivariant with
respect to

Fl : M −→ M, (x, y, z) 7→
(
x1 −

2π
l
, x∗, y, zI , e

2π i
l zII

)
. (1.6)

Here zII ∼= z2j−1 + iz2j singles out two of the z-variables in
a complexified form and zI = (z1, z2, . . . , z2j−2, z2j+1, . . . , z2p)
contains the remaining z-variables. To allow for a unified
formulation of our results we define a reversing symmetry group
Σ and a character (a group homomorphism) χ : Σ −→ {±1} as
follows:

(i) In the purely reversible case we set Σ := {Id,G} and χ(G) :=
−1.

(ii) In the equivariant-reversible case we define Σ as the group
generated byG and Fl anddefineχ byχ(G) := −1 andχ(Fl) :=
1.

In both cases Σ is isomorphic to Z2 n Zl, the dihedral group of
order 2l.When l = 1 the generator F1 = Id of course is superfluous.
For both cases we put

X+ = {X ∈ X | E∗(X) = X for all E ∈ Σ}
X− = {X ∈ X | E∗(X) = χ(E)X for all E ∈ Σ}

together withX±lin = X±Glin ∩X±. Furthermore we letB+ andB−

consist of the constant vector fields in X+ and X−, respectively
and denote by

O(Ω0) =
{
Ad (A) ·Ω0 := AΩ0A−1 | A ∈ GL+(2p;R)

}
the orbit under the adjoint action of GL+(2p;R) on gl−(2p;R).

Definition 1 (Broer, Huitema and Takens [14]). The parametrized3
vector field Xλ with linearization N(Xλ)(x, y, z) = ω(λ)∂x +
Ω(λ)z∂z is non-degenerate at λ = λ0 ∈ Rs if

bht(i) ker adN(Xλ0) ∩B+ = {0};
bht(ii) at λ = λ0 the mapping (ω,Ω) : Rs −→ Rn ×

gl−(2p;R), λ 7→ (ω(λ),Ω(λ)) is transverse to {ω(λ0)} ×
O(Ω(λ0)).

The two non-degeneracy conditions bht(i) and bht(ii) generalize
the condition that adN(Xλ0) has to be invertible, a requirement
that lies at the basis of Mel’nikov’s conditions ((1.7) with |`| 6=
0). One also speaks of BHT non-degeneracy. Compared to the
formulation in [14], Section 8a2 the requirement thatΩ(λ0) have
only simple eigenvalues is dropped. The extension to multiple
normal frequencies was developed in [11,17,22] for invertible
Ω(λ0); we return to the original formulation of bht(i).
To formulate the strong non-resonance condition necessary for

persistence of invariant tori we introduce for Ω ∈ gl−(2p;R)
the normal frequency mapping α : gl−(2p;R) −→ R2p where
the components of α(Ω) are equal to the imaginary parts of the
eigenvalues ofΩ ∈ gl−(2p;R). Highermultiplicities are taken into
account by repeating each eigenvalue as many times as necessary.

Definition 2. A pair (ω,Ω) ∈ Rn × gl−(2p;R) is said to satisfy a
Diophantine condition if there exist constants τ > n− 1 and γ > 0
such that

|〈k, ω〉 + 〈`, α(Ω)〉| ≥ γ |k|−τ (1.7)

for all k ∈ Zn \ {0} and ` ∈ Z2p with |`| ≤ 2.

3 The rôle of the external parameter λ occurring in Definition 1 can be (partially)
taken by the internal parameter y.
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